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The focus of this paper is the effect of spatial non-uniformity in the ambient flow
on the forces acting on a rigid sphere when the sphere Reynolds number, Re, is in
the range 10 to 300. Direct numerical simulations (DNS) based on a pseudospectral
methodology are carried out to solve for the unsteady three-dimensional flow field
around a sphere which is either held stationary or allowed to translate freely under
the hydrodynamic forces. The various components of the total force, namely the
inertial, steady viscous, and history forces, are systematically estimated in the context
of linearly varying straining flows. The inertial forces are isolated by computing the
rapid changes in the drag and lift forces in response to a rapid acceleration of the
ambient flow. It is shown that the inertial forces arising due to convective acceleration
at moderate Reynolds numbers follow the inviscid flow result. While the effect of
temporal acceleration depends only on the sign and magnitude of the acceleration,
the effect of convective acceleration is shown to depend also on the initial state of the
ambient flow. A simple theoretical argument is presented to support the numerical
observations. It is also shown that the effect of convective acceleration on the steady
viscous force can be realized on a slower time scale. The results show that the history
kernels currently available in the literature are not adequate to represent the effect of
non-uniformity on the history force.

We isolate the steady viscous force by considering the simulation results for a
stationary sphere subjected to steady straining flows. It is shown that the steady
viscous forces under such non-uniform ambient conditions cannot be adequately
represented by Schiller–Neumann-type drag laws. A generalized representation for
the steady viscous force on a sphere subjected to straining flows at moderate Re is
presented. The strain-induced corrections to the steady viscous force, under some
situations, are shown to be significant and of at least the same order as the
inertial forces. In order to further estimate the importance of different forces, we
consider direct numerical simulations of the unsteady free translation of a sphere
in straining flows. The predictions based on the Schiller–Neumann drag significantly
misrepresent the exact force obtained from DNS. The inclusion of the inertial forces
improves the prediction when the sphere moves within the same plane of strain,
and worsens when the sphere moves away from the plane of strain. The DNS
results can be predicted well when the strain-induced corrections to the viscous drag
are included. Analysis of the different components of the total force suggests that
the Schiller–Neumann drag, the inertial forces due to convective acceleration, and
the strain-induced viscous corrections are the dominant components. The contri-
butions from the acceleration of the sphere and the history force are consistently
small.
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1. Introduction
In the limit of potential flow, the hydrodynamic force exerted on a rigid sphere

moving in an unsteady but spatially uniform ambient flow is given by (Lamb 1932;
Batchelor 1967)

F = mf

[
∂U
∂t

+ CM

(
∂U
∂t

− dV
dt

)]
, (1.1)

where U is the undisturbed fluid velocity, V is the velocity of the rigid sphere, mf is
the mass of fluid displaced by the sphere and CM is the added-mass coefficient, which
for a sphere is 1/2. The first term on the right-hand side of (1.1) is the effect of the
pressure gradient of the ambient flow, and the second term is the added-mass effect
due to the temporal acceleration of the fluid and the sphere.

The case of a spatially non-uniform irrotational flow was originally considered by
Taylor (1928) and Tollmien (1938). Taylor’s inviscid analysis was later revisited and
extended by many, including Voinov, Voinov & Petrov (1973), and Auton, Hunt &
Prud’homme (1988). For an irrotational ambient flow, Auton et al. (1988) showed
that the force on a sphere is given by

F = mf

[
DU
Dt

+ CM

(
∂U
∂t

− dV
dt

)
+ CMU · ∇U

]
. (1.2)

Here D/Dt = ∂/∂t + U · ∇ is the total derivative following the local fluid element.
The first two terms on the right are similar to those in (1.1) representing the pressure
gradient and the added-mass forces. The last term represents the added-mass force
due to spatial non-uniformity in the undisturbed flow. In (1.2), U and its derivatives
are computed at the instantaneous location of the centre of the sphere.

On the other hand, in the limit of Stokes flow, i.e. as the sphere Reynolds number
Re = |U − V |d/ν → 0, the unsteady motion of the sphere moving in an otherwise
stagnant fluid is given by the classical Basset–Boussinesq–Oseen (BBO) equation. A
generalization to the BBO equation for a non-uniform flow was first proposed by
Tchen (1947). Several subsequent works have corrected and improved upon the results
of Tchen. The final form was obtained by Maxey & Riley (1983) and by Gatignol
(1983) as

F = 3πµd(U − V ) +
3

2
d2√

πρfµ

∫ t

0

dU/dτ − dV/dτ√
t − τ

dτ

+ mf

[
DU
Dt

+ CM

(
dU
dt

− dV
dt

)]
. (1.3)

Here d is the diameter of the sphere, ρf and µ are the density and viscosity of the fluid,
and d/dt = ∂/∂t + V · ∇ is the total derivative following the sphere. There are two
additional terms arising from the viscous effects: the first term on the right-hand side
is the Stokes drag, and the second term is the Basset history force. Faxén corrections
that account for the quadratic variation in the fluid velocity are ignored here.

In many practical situations, however, the sphere Reynolds number is moderate (1 <

Re < 103) and the extension of the theoretical results from the inviscid and creeping
flow limits to moderate Re is not straightforward. Motivated by the inviscid and
creeping flow results, the extension to moderate Re can be expressed as (Magnaudet
& Eames 2000)
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F = Fsv + 3dπµ

∫ t

−∞
K(t, τ )

(
dU
dτ

− dV
dτ

)
dτ

+ mf

[
DU
Dt

+ CM

(
∂U
∂t

− dV
dt

)
+ CMU · ∇U

]
. (1.4)

The justification of such a representation requires precise definitions of the different
terms based on physical mechanisms. The first two terms are viscous (non-inertial)
in origin, while the remaining terms are inertial. The inertial forces are realized on a
rapid time scale, while the non-inertial forces develop on a slow diffusion time scale.
The inertial forces can be further separated into contributions from the pressure
gradient and the added-mass forces. The non-inertial effect can be separated into a
steady and a transient component. The steady viscous force, Fsv, is defined to be
dependent only on the local instantaneous state of the fluid and sphere (i.e. only on
U − V and ∇U). The transient component is similar to the Basset force whose kernel
K(t, τ ) decays as (t − τ )−1/2 for a short time and much quicker over a longer time.
Under steady conditions in a uniform ambient flow the history force becomes zero
and Fsv reduces to the so-called ‘standard drag’.

It is a common practice in the Lagrangian tracking of particles in multiphase flow
studies to simply use empirical drag laws, such as the popular one given by Schiller
& Neumann (1933),

F ≈ Fsv ≈ 3πµd(U − V )[1 + 0.15Re0.687]. (1.5)

The effect of temporal and spatial gradients as represented by the history and added-
mass forces is ignored in such simple drag laws. The effect of ∇U on Fsv is also
ignored. The above force law is well justified under steady conditions in a uniform
flow. However, its widespread usage despite this is due to a lack of complete confidence
in more complex force representations, such as the one given in (1.4). As pointed out by
Magnaudet (1997), our understanding needs to improve along three different fronts:
(i) the added-mass force must be firmly established in non-uniform ambient flows,
(ii) the steady viscous drag, Fsv, must be generalized to non-uniform ambient flows
by considering its dependence on ∇U , and (iii) a generalization of the history force
in non-uniform flows must be sought. The primary focus of this paper is to improve
our understanding of the above three issues. Attention will be limited to irrotational
ambient flows: thus we will avoid any discussion of the rotational lift force or the
effect of ambient vorticity on the steady viscous drag.

1.1. Added-mass force

The past decade has seen several significant contributions towards an improved
understanding of the added-mass force (Rivero, Magnaudet & Fabre 1991; Chang
& Maxey 1995; Mei, Lawrence & Adrian 1991; Howe 1995; Mougin & Magnaudet
2001; also see Magnaudet & Eames 2000). The focus has generally been on the
added-mass force at moderate Re arising from the temporal acceleration of either
the fluid or the sphere, or both. Mei et al. (1991) computed the unsteady force on a
stationary sphere in an oscillatory flow and extracted the added-mass force from the
imaginary part of the unsteady drag in the high-frequency limit. They deduced that
the added-mass coefficient for temporal acceleration at moderate Re was the same
as that in the creeping and potential flow limits. Rivero et al. (1991) used a clever
numerical procedure to separate the history and added-mass forces from the total
unsteady force. Their investigations of oscillatory and uniformly accelerating flows
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established the inviscid result of CM = 1/2 to be valid even at moderate Re. Chang
& Maxey (1995) exploited the fact that in an accelerating flow the inertial forces
are immediately realized after the application of the acceleration, while the viscous
effects grow on a slower time scale. By considering the forces on a sphere subjected
to temporally accelerating and decelerating uniform flows (∇U = 0, ∂U/∂t �= 0) and
by examining the time evolution of the drag force over a short time, they confirmed
CM = 1/2 to be valid at moderate Re. More recently Howe (1995) and Mougin &
Magnaudet (2001) have shown more rigorously that the concept of the added-mass
is well-defined at moderate Re in the presence of both free and surface-generated
vorticity.

While the added-mass force due to temporal acceleration has received much
attention, that due to convective acceleration of the fluid is relatively less studied.
As pointed out by Magnaudet, Rivero & Fabre (1995), in non-uniform flows, the
separation of the added-mass force is complicated by the fact that the non-uniformity
not only induces an inertial force but also modifies the viscous drag as a direct
consequence of the changes in the surface vorticity distribution. They performed
simulations of straining ambient flows over a solid sphere and a spherical bubble
at moderate Re. Based on the computed pressure drag, they evaluated the added-
mass coefficient for convective acceleration to be 1/2. Here we consider an approach
similar to that taken by Rivero et al. (1991) and Chang & Maxey (1995) for the case
of temporal acceleration, and extend that approach to isolate the inertial forces in
the presence of convective acceleration. We consider simulations of rapidly imposed
straining flows on a stationary sphere. By monitoring the time evolution of the drag
and lift forces over a short time we isolate the added-mass force. The present results
therefore add to our current understanding of the added-mass force in non-uniform
flows.

1.2. Effect of strain on Fsv

In a non-uniform ambient flow the steady viscous force Fsv is modified as a
direct result of the changes in the surface distribution of vorticity and pressure.
In axisymmetric straining flows, Magnaudet et al. (1995) have shown a substantial
increase in the viscous drag over that of the corresponding uniform flow. In planar
straining flows, and for straining flows oriented at an angle to the relative velocity,
Bagchi & Balachandar (2002a) observed an even larger influence on the drag and
lift forces. It thus appears that in the presence of ambient flow inhomogeneity, Fsv

may no longer be adequately represented by drag laws of the form (1.5). In addition
to the dependence of Fsv on local relative velocity |U − V |, the effect of ∇U must
also be included. Using direct numerical simulation results for axisymmetric straining
flows (Magnaudet et al. 1995) and planar straining flows (Bagchi & Balachandar
2002a) past a stationary sphere, we isolate the steady viscous contribution. The
results are shown to be substantially different from the Schiller–Neumann formula
(1.5). A parameterization for Fsv in terms of |U − V | and ∇U is then presented
for selected orientations of the axisymmetric and planar straining flows. The strain-
induced viscous corrections to Fsv are shown to be of the order of the inertial forces,
under some orientations of the ambient strain.

We further examine the effect of non-uniformity by performing a direct numerical
simulation (DNS) of a freely translating sphere in straining flow, where the sphere is
moved in response to the drag and lift forces computed from the surface distribution
of the pressure and shear stress. The results show that the Schiller–Neumann law
(1.5) can significantly mispredict the exact force. Inclusion of the inertial forces can
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improve the prediction. However, in some cases further inclusion of the strain-induced
corrections to Fsv is needed for satisfactory prediction of the DNS results. These test
cases validate the parameterization of Fsv proposed in this paper for straining flows.

1.3. History force in non-uniform flows

The precise form of the history kernel at finite Re is not fully settled even in a
uniform ambient flow. It is generally accepted that the history kernel, K in (1.4),
varies as (t − τ )−1/2 for short times, and as (t − τ )−2 for longer times (Mei et al.
1991; Mei & Adrian 1992; Lovalenti & Brady 1993; Kim, Elghobashi & Sirignano
1998). The representation is likely to be more complex in a non-uniform ambient
flow. Magnaudet et al. (1995) have shown that a naive introduction of the convective
acceleration using DU/Dt in the history integral can lead to erroneous results. In the
present work, further insight into the history force is obtained on two fronts. First,
the moderate-Re history kernel of the form obtained by Mei & Adrian (1992), which
works well for the case of an unsteady uniform flow, is shown to be inadequate for
the case of convective acceleration. It is shown that when a straining flow is rapidly
imposed on a viscously developed flow, the short-time effects of the inertial forces are
masked by the history force, whose magnitude can be very high. Second, from the
DNS results of the freely translating sphere in straining ambient flows, we extract
the history force during the unsteady motion of the sphere. The results suggest that
for the case of free translation under ambient straining flow the history force is not
significant.

In the following section, the numerical methodology used in the present study is
described. Section 3 presents the results on rapid acceleration of the ambient flow to
isolate the inertial forces. The estimation of Fsv and its generalized representation are
given in § § 4 and 5. Finally, the unsteady results corresponding to a freely translating
sphere are presented in § 6.

2. Problem formulation
2.1. Governing equations

We consider the unsteady, three-dimensional flow generated by a rigid sphere moving
in a linearly varying ambient flow. With respect to a fixed reference frame (X, τ ), the
ambient flow is prescribed as

U = U eX + X · (S + Ω), (2.1)

where U is the oncoming uniform component. Without loss of generality, U is assumed
to be directed along the positive X-axis. S and Ω are the pure straining and rotational
components of the velocity gradient ∇U . In general, U , S and Ω are time-dependent
in the case of an unsteady ambient flow. For brevity, in this paper we will consider
irrotational ambient flows only (Ω = 0). The formulation and methodology described
below are applicable to rotational flows as well.

The strain tensor S is characterized in terms of its eigenvalues σ1, σ2 and σ3 (|σ1| >

|σ2| > |σ3|). In an incompressible flow the sum of the eigenvalues is constrained to be
zero and the largest two eigenvalues are of opposite sign. Their ratio fs = |σ2|/|σ1|
is bounded by 1/2 � fs � 1, where fs = 1/2 implies axisymmetric strain and fs = 1
implies planar strain. For a general case when the principal axes of S are at an angle
to the coordinate axes (X, Y or Z), the orientation of the strain-rate tensor needs to
be defined as well. The angles Θ and Φ describe the orientation of S with respect to
the relative velocity U r = U(Xp) − V , where Xp is the instantaneous position of the
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Figure 1. Strain configuration with respect to the uniform component of the ambient flow.
Θ represents the in-plane orientation of the converging direction of the strain tensor with the
uniform flow, while Φ represents the out-of-plane orientation.

centre of the sphere. Θ is the angle between U r and the principal direction associated
with σ1. Φ is the angle between U r and the plane formed by the the principal
directions associated with σ1 and σ2 (see figure 1). Therefore the four parameters that
fully characterize the instantaneous strain rate are the largest eigenvalue (σ = σ1),
the nature of the strain (fs) and the orientation (Θ and Φ). For axisymmetric strain,
results will be independent of Φ .

The presence of the sphere introduces a disturbance field U ′(X, τ ). The resultant
flow field is then given by U + U ′. At a large distance from the sphere, U ′ approaches
zero. On the surface of the sphere, the no-slip and no-penetration conditions require
that U ′ = V − U(Xp + (d/2)er ). The resultant flow field satisfies the incompressibility
condition and the Navier–Stokes equation. In terms of U ′, the governing equations
in dimensional form are written as

∇ · U ′ = 0, (2.2)

∂U ′

∂τ
+ U ′ · ∇U ′ + U ′ · ∇U + U · ∇U ′ = − 1

ρf

∇p′ + ν∇2U ′. (2.3)

Here the resultant pressure is written as P + p′, and P is related to U by

− 1

ρf

∇P =
∂U
∂τ

+ U · ∇U . (2.4)

We introduce a non-inertial reference frame (x, t) which moves with the sphere and
with origin located at the centre of the sphere. In the non-inertial frame, using the
transformation

u(x, t) = U ′(X, τ ) − V (τ ), (2.5)

(2.2) and (2.3) can be written as

∇ · u = 0, (2.6)
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∂u
∂t

+
dV
dt

+ u · ∇u + U · ∇u + u · ∇U + V · ∇U = − 1

ρf

∇p′ + ν ∇2u. (2.7)

At a distance far from the sphere, u satisfies the condition u = −V . On the surface of
the sphere, it satisfies u = −U(Xp + (d/2)er ). The equations are made dimensionless
with appropriate reference variables which are described in a later section. The sphere
Reynolds number is defined as Re = d|U r |/ν, and the dimensionless strain magnitude
is defined as s = σd/|U r |.

The resultant force (in dimensional form) on the sphere is obtained by integrating
the normal and tangential stresses on the surface:

Fi =

∫
S

[
−(p′ + P ) er + τrθ eθ + τrφ eφ

]
· ei dS, (2.8)

where τrθ and τrφ are computed from the net velocity field. The first term on the
right-hand side is the pressure force, while the next two terms are the viscous force.
A non-dimensional force coefficient is defined as

C F =
F

1
2
ρf |U r |2 π(d/2)2

. (2.9)

The component of C F along U r is the drag coefficient CD . Due to the three-
dimensional nature of the flow, a lift force normal to U r may also be generated which
will be characterized by a lift coefficient CL.

In addition to solving the fluid flow equations, the sphere is advected by

F + Fext = mpap,
dV
dτ

= ap,
dXp

dτ
= V , (2.10)

where mp is the mass of the sphere and ap is its acceleration. Fext is an externally
applied force and it is equal to −F for a stationary sphere and zero for a freely
moving sphere.

2.2. Numerical methods

The governing equations are solved in a spherical coordinate system (r, θ, φ) where

d/2 � r � R, 0 � θ � π, 0 � φ � 2π.

Here R represents the boundary of the computational domain. A pseudospectral
(collocation) method is used to solve the unsteady three-dimensional equations. The
method is described in greater detail in Bagchi & Balachandar (2000a). In brief,
a Chebyshev collocation scheme is used in the radial direction while a Fourier
collocation is used in the azimuthal (φ) direction. In the tangential direction (θ ),
appropriate expansions for the flow variables are obtained by satisfying the ‘pole
parity’ conditions. Such conditions arise due to the fact that the tangential and
azimuthal components of a vector and its derivatives change sign over the poles at θ =
0 and π. The expansion functions depend on the odd or even mode of the azimuthal
wavenumber k and are given by

ur =




∑
cos mθ even k∑
sin mθ odd k,

(2.11)

uθ , uφ =




∑
sin mθ even k∑
cos mθ odd k.

(2.12)
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A typical grid used in the simulation has 81, 80 and 32 points in the radial, tangential
and azimuthal directions, respectively. A grid stretching is used to cluster grid points
near the surface of the sphere and in the wake region.

A two-step time-split scheme is used to advance the flow field from time level ‘n’ to
‘n + 1’:

advection–diffusion step :
u
 − un

�t
+ N L(un) = ν D(u
), (2.13)

pressure–correction step :
un+1 − u


�t
= − 1

ρf

∇p′
n+1, (2.14)

where D and N L are the diffusion and nonlinear terms. The nonlinear terms are
treated explicitly using a second-order Adams–Bashforth scheme while the diffusion
terms are treated implicitly using a Crank–Nicolson scheme. Pressure at ‘n + 1’ is
obtained by solving a Poisson equation

1

ρf

∇2p′
n+1 =

∇ · u


�t
. (2.15)

The implicit treatment of the above equation satisfies the divergence-free condition,
∇ · un+1 = 0.

At the inflow boundary, a Dirichlet boundary condition specifying the ambient
flow is used. At the outflow, a non-reflecting boundary condition from Mittal &
Balachandar (1996) is used. On the surface of the sphere, no-slip and no-penetration
conditions are implemented as

u
 = −U(Xp) +
1

ρf

�t(2∇p′
n − ∇p′

n−1). (2.16)

Combined with a homogeneous Neumann boundary condition for pressure,

∂p′
n+1/∂r = 0, (2.17)

(2.16) guarantees zero penetration through the surface of the sphere, while the no-slip
condition is satisfied to O(�t3). A typical non-dimensional time-step used in the
present study is �t |U − V |/d = 0.001. In simulations of rapid acceleration of the
ambient flow, the time-step is further reduced.

3. Rapidly accelerating flows
In this section we compute the inertial forces (added-mass and pressure gradient

forces) due to convective acceleration of the ambient flow. The sphere is held stationary
and its centre coincides with the origin of the fixed frame (X). The flow is accelerated
rapidly either from a stagnant condition or from a fully (viscously) developed initially
steady condition. As the flow accelerates, the no-slip condition on the surface of the
sphere results in the generation of vorticity, which diffuses out radially at the diffusion
time scale and then advects downstream at the convective time scale. For a short
period of time after the initiation of acceleration, vorticity has very little time to
diffuse away from the surface and remains confined to a thin region. Away from this
region, the flow can be assumed to be nearly potential. In contrast, the inviscid effect
of no penetration through the surface is instantaneously realized and appears as the
added-mass and pressure gradient forces. Thus, on a short time scale any changes in
the drag and lift forces should be given by the inviscid flow result (1.2).
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Figure 2. (a) Temporal acceleration of the free stream and (b) the drag coefficient with time:
——, CPD; - - - - - -, CVD.

This idea was originally employed by Rivero et al. (1991) and Chang & Maxey
(1995) for unsteady but uniform ambient flows. In the following subsection, we first
reproduce their results for temporal acceleration to validate our simulation technique.
We then extend the methodology to the case of convective acceleration.

3.1. Effect of temporal acceleration

We begin with a case where the fluid around the sphere is stagnant for t � 0. For
0 � t � t0, the ambient flow is linearly accelerated to a new velocity U0eX . To non-
dimensionalize the variables, we use the sphere diameter d as the reference length
scale, U0 as the velocity scale, and d/U0 as the reference time scale. Dimensionless
variables are denoted by a tilde. Then, the ambient flow is given by

Ũ(t̃) = 0, t̃ � 0,

Ũ(t̃) =
t̃

t̃0

eX, 0 � t̃ � t̃0,

Ũ(t̃) = eX, t̃ � t̃0.




(3.1)

Hence the magnitude of the acceleration is given by 1/t̃0 and is maintained constant
over 0 � t̃ � t̃0 (see figure 2a). For a short period after the initiation of acceleration
the drag force should be approximated well by the inviscid flow result. Then, using



114 P. Bagchi and S. Balachandar

(1.2) in dimensionless form, the drag coefficient can be written as

CD = 4
3
(1 + CM )

∂Ũ
∂t̃

. (3.2)

Figure 2(b) shows the time variation in the pressure (CPD) and viscous (CVD)
components of the drag coefficient for 1/t̃0 = 40. Over a short period of time, of the
order of a time step �t̃ = 10−4, the only change observed is in the pressure drag, in
the form of a sudden change of about 80 at t̃ = 0. By (3.2), the drag coefficient due to
the added-mass and pressure gradient effects becomes 160

3
(1 + CM ). Thus, the change

in CPD of about 80 corresponds to CM = 1/2. At the end of the acceleration (̃t = 0.025),
the pressure drag suffers a sudden drop and the magnitude of this change is again
approximately equal to 80, consistent with the inviscid flow prediction. Subsequently,
CPD and CVD approach their steady-state values corresponding to Re = dU0/ν = 10.
The simulation reproduces the results of Rivero et al. (1991) and Chang & Maxey
(1995). It also confirms that the numerical methodology adopted here works well for
the case of rapidly accelerated flows.

3.2. Effect of convective acceleration

Now we examine the influence of rapidly imposed straining flows. The sphere is held
stationary and for t � 0 the fluid around it is stagnant. For 0 � t � t0, a straining
flow is imposed on the sphere along with a temporally accelerating uniform flow. At
t = t0, the uniform component reaches U0eX and the strain-rate tensor reaches S0. At
this point the temporal acceleration of the uniform flow is stopped and the imposed
strain-rate is maintained at S0 for t � t0. Hence, the ambient flow in dimensionless
form is given by

Ũ(t̃) = 0, t̃ � 0,

Ũ(t̃) =
t̃

t̃0

eX + X̃ · S̃ (t̃), 0 � t̃ � t̃0,

Ũ(t̃) = eX + X̃ · S̃0, t̃ � t̃0.




(3.3)

Figure 3(a) shows the time history of temporal acceleration, ∂Ũ/∂t̃ , measured at the
centre of the sphere (X̃ = 0), and the non-dimensional strain magnitude, s = σd/U0.
As in the previous case, the temporal acceleration is chosen to be 1/t̃0 = 40. The final
Reynolds number at the end of acceleration is 10. The strain rate is axisymmetric in
nature and its elongational direction is aligned with the X-axis so that

S̃ =




s 0 0

0 −s/2 0

0 0 −s/2


 . (3.4)

At t̃ = 0.025, the strain magnitude s reaches a value of s0 = 0.2. In the absence
of strain, the example considered here is the same as in the previous case (§ 3.1
and figure 2b) and the drag coefficient is given by (3.2). When S̃ �= 0, (1.2) in
non-dimensional form becomes

CD = 4
3
(1 + CM )

∂Ũ
∂t̃

+ 4
3
(1 + CM )

t̃

t̃0

s. (3.5)

Thus, the addition of strain, according to the inviscid theory (1.2), further enhances
the drag coefficient by

4
3
(1 + CM )st̃/t̃0 for 0 � t̃ � t̃0, and 4

3
(1 + CM )s0 for t̃ � t̃0,
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Figure 3. Effect of convective acceleration. (a) Acceleration of the free stream: ——, ∂Ũ/∂t̃;
- - - - - -, s. (b) The evolution of the drag coefficient with time after subtracting the effect of
temporal acceleration as shown in figure 2(b), i.e. �CPD = CPD(∂U/∂t, ∇U) − CPD (∂U/∂t)
——, �CPD; - - - - - -, �CVD.

when compared to (3.2). Figure 3(b) shows the time history of the increase in the
pressure (�CPD) and viscous drag (�CVD) coefficients due to the imposed strain, over
and above the effect of temporal acceleration of the uniform flow (3.2). In other
words, the result shown in figure 2(b) has been subtracted and only the difference
is plotted in figure 3(b) to highlight the effect of strain. Both the uniform and
strain-rate components are increased linearly, and correspondingly the pressure drag
increases quadratically. The increase in the pressure drag coefficient at t̃ = 0.025 is
approximately 0.4 and therefore is well-predicted by the inviscid flow result 4

3
(1+CM )s0

with CM = 1/2. Other variations of s(t), such as quadratic and exponential, have also
been attempted. These changes influence the rate of increase in the drag coefficient
over 0 � t̃ � 0.025, but the overall increase in drag depends only on s0. This is in
agreement with Auton et al.’s (1988) analysis that in an inviscid flow the force on the
sphere is not influenced by the rate of change of of the strain rate.

A number of simulations with simultaneous temporal and convective accelerations
of the ambient flow have been performed at different Reynolds numbers and strain
magnitudes, and for both axisymmetric and planar strain, which are reported in
table 1. In all cases, the inviscid theory with CM = 1/2 is observed to be quite accurate.
Also shown in table 1 are the results for planar straining flows with elongational
direction oriented at an angle to the X-axis (Θ �= 0, Φ �= 0). In these cases, the effect
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Strain Re s Computed �CPD �CPD from inviscid theory

Axisymmetric 10 0.1 0.192 0.200
Axisymmetric 10 0.2 0.387 0.400
Axisymmetric 50 0.1 0.197 0.200
Axisymmetric 200 0.1 0.207 0.200
Planar, Θ = 0, Φ = 0 10 0.1 0.202 0.200
Planar, Θ = 0, Φ = 0 10 0.2 0.433 0.400
Planar, Θ = 0, Φ = 0 50 0.1 0.207 0.200
Planar, Θ = 0, Φ = 0 100 0.1 0.215 0.200
Planar, Θ = 0, Φ = 0 200 0.1 0.220 0.200

Computed �CPL �CPL from inviscid theory
Planar, Θ = π/4, Φ = 0 10 0.1 0.196 0.200
Planar, Θ = π/4, Φ = 0 10 0.2 0.392 0.400
Planar, Θ = π/4, Φ = 0 50 0.1 0.202 0.200
Planar, Θ = π/4, Φ = 0 200 0.1 0.211 0.200
Planar, Θ = 0, Φ = π/4 10 0.1 0.103 0.100
Planar, Θ = 0, Φ = π/4 50 0.1 0.098 0.100

Table 1. Effect of rapid convective acceleration of the ambient flow. The rapid changes in
the pressure drag (�CPD) and lift (�CPL) coefficients over 0 to t̃0 are listed based on the
simulation results and the predictions by the inviscid flow result of Auton et al. (1988).
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Figure 4. Effect of rapid convective acceleration on lift forces. A planar straining flow is
imposed at Θ = π/4, Φ = 0 orientation and the response of the lift coefficients are shown.
——, CPL; - - - - -, CVL.

of strain is to introduce a lift force (Bagchi & Balachandar 2002a). The magnitude
of the lift force at t̃0 is consistent with the inviscid flow prediction. For example, the
case of Re = 10, s0 = 0.2 and Θ = π/4, Φ = 0 is shown in figure 4. A rapid increase
in the pressure lift coefficient (�CPL) of magnitude 0.39 is consistent with the inviscid
flow result of 4

3
(1 + CM )s0 with CM = 1/2.

3.3. Effect of viscous saturation

The above results suggest that the added-mass effects of both temporal and convective
accelerations of the ambient flow are similar in nature. However, the similarity is
limited to the case of rapid acceleration from an initially stagnant flow. Differences
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begin to emerge when the flow is accelerated from a fully developed non-stagnant
initial condition. The effect of temporal acceleration is dependent only on the sign
and magnitude of acceleration, and is independent of whether the flow is accelerated
from a stagnant or a fully developed initial flow. In fact, in the simulations of Chang
& Maxey (1995), the initial state was taken as a steady, moderate-Re, fully developed
flow. The ambient flow was accelerated from an initial velocity Ũ b according to

Ũ(t̃) = Ũ beX, t̃ � 0,

Ũ(t̃) =

(
Ũ b +

t̃

t̃0

)
eX, 0 � t̃ � t̃0,

Ũ(t̃) = (Ũ b + 1)eX, t̃ � t̃0.




(3.6)

The final velocity in dimensionless form is Ũ b + 1. They observed that the sudden
change in the pressure drag force at the start or end of the acceleration process was
still given by 4

3
(1 + CM )∂Ũ/∂t̃ . Thus, using a fully developed flow as the initial state

did not seem to modify the effect of temporal acceleration.
An analogous fully developed initial condition can be considered for the case of

convective acceleration as well. Consider the general case of an initial state, where for
t̃ � 0 the sphere is held stationary in a steady linear ambient flow of uniform velocity
component Ũ beX and strain-rate component S̃b. For 0 � t̃ � t̃0, the ambient flow is
rapidly changed to a new state characterized by a uniform component of (Ũ b + 1)eX

and a strain-rate component of S̃b + S̃0. Hence

Ũ(t̃) = Ũ beX + X̃ · S̃b, t̃ � 0,

Ũ(t̃) =

(
Ũ b +

t̃

t̃0

)
eX + X̃ · S̃(t̃), 0 � t̃ � t̃0,

Ũ(t̃) = (Ũ b + 1)eX + X̃ · (S̃b + S̃0), t̃ � t̃0.




(3.7)

The effect of convective acceleration due to the newly imposed strain S̃0 can be
evaluated by the difference in the changes in computed CPD over 0 � t̃ � t̃0 observed
with and without S̃0. In the absence of S̃0, the inviscid theory (1.2) predicts a change
which is given by

�CD(S̃0 = 0) = 4
3
(1 + CM )

[
(Ũ b + 1)sb − Ũ bsb

]
. (3.8)

When S̃0 is non-zero, (1.2) gives

�CD(S̃0 �= 0) = 4
3
(1 + CM )

[
(Ũ b + 1)(sb + s0) − Ũ bsb

]
. (3.9)

Therefore, the effect of the newly imposed strain, according to the inviscid theory, is

�CD(S̃0 �= 0) − �CD(S̃0 = 0) = 4
3
(1 + CM )s0(Ũ b + 1), (3.10)

and it arises due to the interaction of S̃0 with both the initial uniform flow, Ũ beX , and
the additional uniform flow, eX , resulting from the temporal acceleration. Consider a
specific example where Ũ b = 1, the initial Re = dUb/ν = 10, t̃0 = 0.0025, sb = 0 and
s0 = 0.2. For this case, the rapid increase in the pressure drag coefficient due to the
inviscid effect is expected to be twice that seen in figure 3(b). However, over a short
time (of the order of t̃0), the increase is observed to be nearly identical to that shown in
figure 3(b). This behaviour is independent of the initial Re, suggesting that the effect of
convective acceleration over a short time is only due to the interaction of the rapidly
imposed strain, S̃0, with the rapidly imposed uniform flow, eX . The contribution
expected from the interaction of the imposed strain with the fully developed portion
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Figure 5. Effect of convective acceleration imposed on a viscously developed initial
condition. Initial Re = 10. ——, CPD; - - - - - -, CVD.

of the uniform flow, which was present even before t̃ = 0, does not appear on a short
time scale.

The above observation is further confirmed with the following test:

Ũ(t̃) = eX, t̃ � 0,

Ũ(t̃) = eX + X̃ · S̃(t̃), 0 � t̃ � t̃0,

Ũ(t̃) = eX + X̃ · S̃0, t̃ � t̃0,


 (3.11)

where the starting condition is a fully developed, steady and strain-free ambient flow
of Ũ b = 1, Re = 10. Between t̃ = 0 and t̃0 = 0.025, an axisymmetric straining flow
of magnitude s0 = 0.2 is imposed without any temporal acceleration of the uniform
component of the ambient flow. Thus, for t̃ � t̃0, the ambient flow field is identical
to that in figure 3(a), and the convective acceleration is the same in both cases.
The computed pressure and viscous drag coefficients are shown in figure 5, and can
be compared with figure 3(b). The difference is striking, since in figure 5 the rapid
addition of the strain rate results in almost no increase in drag on a short time scale.
Thus, the inertial effect of convective acceleration arising from the interaction of a
rapidly imposed strain with a viscously developed uniform flow is somehow nullified
by the viscous effects. In the following section, a theoretical analysis is presented to
explain the above numerical observations.

3.4. A theoretical analysis

Consider the general case of an initially steady linear ambient flow rapidly changed
to a new state as defined in (3.7). Let ũb and p̃b be the corresponding fully developed
initial velocity and pressure fields around the sphere that satisfy the Navier–Stokes
equation and the incompressibility condition. The flow ũb approaches the ambient
condition as x̃ → ∞ and satisfies the no-slip and no-penetration conditions on the
surface of the sphere. For t̃ � 0, let the instantaneous velocity and pressure fields
around the sphere be ũ and p̃. They satisfy the unsteady Navier–Stokes and continuity
equations. It is illustrative to write ũ as

ũ = ũb + ṽp + ṽv, (3.12)
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where ṽp is the potential flow corresponding to the newly imposed ambient flow, i.e.

t̃/t̃0 eX + (S̃(t̃) − S̃b) · X̃ . Here ṽp satisfies the no-penetration condition

ṽp · n = 0, (3.13)

where n defines the unit normal to the surface of the sphere. The no-slip boundary
condition on the surface of the sphere for the newly imposed ambient flow is satisfied
by the viscous component ṽv , and for small t̃0 the viscous effect is confined to a thin
region around the sphere. The Navier–Stokes equation for ũb can be subtracted from
that of ũ to obtain

−∇p̃ + ∇p̃b ≈ ∂ ṽp

∂t̃
+ ũb · ∇ṽp + ṽp · ∇ṽp + ṽp · ∇ũb. (3.14)

In the above, contributions from the viscous component ṽv are ignored, which for
very short times can be justified following the scaling argument given by Mougin &
Magnaudet (2001).

Time variations in both the uniform and strain-rate components of the ambient
flow are included in ∂ ṽp/∂t̃ . However, it is only the temporal acceleration of the
uniform component that contributes to the drag force. From symmetry arguments it
can be shown that the time variation in the strain rate S̃ makes no net contribution.
Furthermore, it can be observed that the pressure distribution is linearly dependent
on the temporal acceleration, while the convective acceleration’s influence is through
the nonlinear terms. The last term on the right-hand side of (3.14) accounts for the
interaction of the strain-rate component of the initial flow with the potential flow
field generated by the newly imposed flow. The second and third terms, respectively,
account for the interaction of the newly imposed strain with the initial, viscously
developed flow (ũb) and the potential field due to the newly imposed flow (ṽp).

The change in the pressure drag coefficient as the flow is rapidly accelerated from
t̃ = 0 to t̃0 can be obtained by integrating (3.14). A few simplifications to this equation
are possible. First, the temporal acceleration of the ambient flow is stopped at t̃0,
which implies that

∂ ṽp

∂t̃
= 0 for t̃ > t̃0. (3.15)

Thus, for t̃ just above t̃0, only the effect of convective acceleration remains. Second,
in order to obtain the pressure drag coefficient, it is sufficient to consider the pressure
variation along the surface of the sphere. This will further simplify the evaluation of
the nonlinear terms in (3.14).

Consider first a case when the initial flow ũb is a potential flow. On the surface
of the sphere, ũb satisfies only the no-penetration condition. Then all three nonlinear
terms on the right-hand side of (3.14) are non-zero and contribute to the pressure
drag force. Integrating this equation twice over the surface of the sphere, one obtains

�CPD = 2(sb + s0)(Ũb + 1) − 2sbŨb. (3.16)

This is consistent with the inviscid flow result (3.9) using CM = 1/2.
Consider now a case when the initial flow ũb is fully developed. Then, on the

surface of the sphere,

ũb = 0 and ∇ũb =


∂ũbr/∂r ∂ũbθ/∂r ∂ũbφ/∂r

0 0 0

0 0 0


 , (3.17)
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in spherical coordinates. The potential part of the newly imposed flow satisfies the
no-penetration condition, which implies

ṽp = [0 ṽpθ ṽpφ]. (3.18)

Together, (3.17) and (3.18) imply that on the surface of the sphere

ũb · ∇ṽp = 0 and ṽp · ∇ũb = 0. (3.19)

Therefore, the second and the last terms on the right-hand side of (3.14) do not con-
tribute to pressure drag. The only contribution is from the third term. Thus, integrating
(3.14) twice, one obtains

�CPD = 2s0. (3.20)

Thus, only the interaction between the viscously unsaturated uniform component
and the strain-rate component of the new ambient flow (i.e. eX · S̃0) is felt im-
mediately over a short time. The added-mass and pressure gradient forces due to
eX · S̃b and Ũ beX · S̃0 are masked by the viscous effects. For t̃ 	 t̃0, the newly
imposed ambient flow also becomes viscously developed. After such a long period
there is no difference between the effect of eX · S̃0 and other contributions to the
convective acceleration. The simulation results presented in figures 2 to 5 and in § § 3.1
to 3.3 are consistent with the theoretical argument above. It must be emphasized that
the above theoretical development is restricted to a solid sphere only because of the
use of the no-slip condition on the surface of the sphere.

3.5. Basset history force

In the general case, where the ambient flow is given by (3.7), the asymptotic behaviour
of the force, for t̃ 	 t̃0, is dependent only on the end state characterized by the
ambient velocity Ũ b + 1 and the strain rate S̃b + S̃0. The corresponding steady
force has contributions only from the steady viscous component (Fsv) and the inertial
components. For t̃ just above t̃0, the local state of the ambient flow is still characterized
by the end state Ũ b + 1 and S̃b + S̃0. As a result, the steady viscous and the inertial
forces at t̃ just above t̃0 are the same as their values as t̃ → ∞. However, the actual
force for t̃ > t̃0 is time-dependent. The transient behaviour is dependent on both the
initial state as well as the manner in which the ambient flow is changed to the end
state. Such transient behaviour needs to be accounted for by the history force.

For example, the final state of the ambient flow is the same in both (3.3) and (3.11).
Therefore, the steady viscous and the inertial forces in both cases are identical. The
different behaviour seen in figures 3(b) and 5 for t̃ > t̃0 is then due to the manner in
which the end state is reached. Therefore it is appropriate to account for the difference
by the history force. Furthermore, for the ambient flow given by (3.3), the inertial
forces due to convective acceleration are immediately realized in the pressure drag.
On the other hand, for (3.11), although the inertial effects are the same for t̃ � t̃0,
they are not immediately realized (see figure 5). This suggests that for a viscously
developed initial state, the added-mass and pressure gradient effects are masked by
the history force.

The history forces for the above cases are shown in figure 6. It is computed by
subtracting the steady viscous and inertial forces from the total force. Consider first
the case of (3.1) where only temporal acceleration is imposed. The rapid increase in
the history force between t̃ = 0 and t̃0 = 0.025 is a direct result of rapid acceleration
of the ambient flow. The rapid increase is followed by a slow decay. It is interesting
to note that the magnitude of the peak history force is about 25 and is comparable to
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Figure 6. The history force in rapidly accelerating flows. (a) ——, Computed history force
for temporal acceleration from a stagnant initial flow (3.1); - - - - - -, computed history for
simultaneous temporal and convective acceleration from a stagnant initial flow (3.3); ····· ,
prediction by Mei & Adrian’s (1992) expression; —�—, prediction by the classical Basset
kernel. Note that both the classical kernel and Mei & Adrian’s expression cannot differentiate
between the cases (3.1) and (3.3). (b) —–, History force due to convective acceleration as
obtained by the difference between (3.3) and (3.1); - - - - - -, history force due to convective
acceleration of a viscously developed flow (3.11); — — —, predictions by the Basset kernel
and Mei & Adrian’s expression. Note that both these kernels predict a zero history force for
the case of (3.11).

the added-mass force. Admittedly, the magnitude of temporal acceleration considered
here is large, since our interest is to isolate the inertial forces.

The history force for the case of a rapid change in both the uniform and strain-rate
components of the ambient flow, (3.3), corresponding to figure 3(b), is also shown
in figure 6(a). The result differs very little from that of (3.1) as the history force
is dominated by the large magnitude of the temporal acceleration, which remains
the same in both cases. The history effect of the strain–rate component can be
isolated by plotting the difference, which is shown in figure 6(b). Between t̃ = 0
and t̃0, it reaches a negative peak and then slowly increases back to zero on a slow
time scale. The negative peak corresponds to the difference in the steady viscous
component, Fsv, with and without strain, i.e. Fsv − F0

sv. In dimensionless terms, the
magnitude of the negative peak is equal to 0.48 and corresponds to the difference
CD,sv(Re = 10, s0 = 0.2) − CD,sv(Re = 10, s0 = 0). The implication is that the effect of
the imposed strain on Fsv is viscous in origin and appears only on a slow time scale.



122 P. Bagchi and S. Balachandar

It is of interest to compare the history force obtained from our simulation with the
predictions based on the Basset kernel (see (1.3)) and also its moderate-Re extension
given by Mei & Adrian (1992) as follows:

K(t, τ ) =

{[
π(t − τ )ν

a2

]1/4

+

[
π

2

|U r (τ )|3
aνf 3

H (Ret )
(t − τ )2

]1/2
}−2

, (3.21)

where fH (Ret ) = 0.75 + 0.105Ret and Ret = |U r |d/ν. Their predictions for the cases
(3.1) and (3.3) are plotted in figure 6(a). For the case of pure temporal acceleration
(3.1), the expression given by Mei & Adrian (1992) reproduces the numerical result
quite accurately. As expected, the classical Basset kernel predicts a larger history
force. However, unlike the numerical results, no difference between the cases (3.1)
and (3.3) can be predicted based on these kernels. This is to be expected since the
sphere is held fixed, and the only unsteady contribution comes from ∂U/∂t , which is
the same for both (3.1) and (3.3).

Finally, the history force for the case of rapidly imposed strain on a fully developed
initial state, corresponding to figure 5 and (3.11), is shown in figure 6(b). In this
case the history effect is in the absence of any temporal acceleration. It reaches a
negative peak at t̃0 and increases slowly back to zero. Since the inertial forces due
to convective acceleration are not realized immediately, the magnitude of the history
force is larger than that obtained by the difference between (3.1) and (3.3). The peak
value of approximately 0.88 now corresponds to the sum of the difference in the steady
viscous components with and without strain, CD,sv(Re = 10, s0 = 0.2) − CD,sv(Re =
10, s0 = 0) = 0.48, and the inertial forces 4

3
(1 + CM )s0 = 0.4. Also shown in the

figure are the predictions based on the Basset kernel and its moderate-Re extension
(3.21), both of which predict that the history force is zero. Thus, the history kernels
developed for unsteady uniform flows are not adequate for convective acceleration.

The form of the history force given in (1.4) and (3.21) does not account for all the
effects. In a non-uniform ambient flow these effects can be summarized as: (i) the
slow development of the permanent viscous effect of strain that ultimately accounts
for the dependence of the steady viscous component, Fsv, on the strain rate; and (ii)
the slow realization of the pressure gradient and added-mass forces when convective
acceleration is imposed on a fully (viscously) developed flow. The history force must
then be augmented by additional terms of the form

∫
K1(t, τ )[u · ∂S/∂τ ] dτ and∫

K2(t, τ )[∂u/∂τ · S] dτ . Given the complex nature of the history term even in a
uniform ambient flow at moderate Re, it can be appreciated that the actual term
and the precise form of the kernels (K1, K2, etc.) are likely to be quite complex for
non-uniform ambient flows.

The magnitude of the history force presented in figure 6(a) is quite large. This
is due to the large temporal acceleration arising from the rapidly imposed ambient
flows considered here. It must be emphasized that these tests on rapidly imposed
acceleration are considered only in order to isolate the inertial forces. Fortunately, in
most multiphase flow applications, such high accelerations, and hence large history
forces, are unlikely to occur. As will be shown later, the history force is indeed quite
small for a freely accelerating sphere in an otherwise steady straining flow.

4. Steady-state results
In the case of a stationary sphere subjected to a steady ambient flow, the only con-

tribution to the inertial force is from convective acceleration. The transient component
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of the viscous force (the history) is zero. Equation (1.4) simplifies to

F = Fsv + mf (1 + CM ) U · S, (4.1)

where U is measured at the centre of the sphere. Knowing the inertial contribution
to the overall force, the steady viscous contribution, Fsv, can be isolated from the
steady-state results. In a uniform flow devoid of any spatial gradient (S = 0), Fsv

reduces to the standard drag force (1.5), which is parameterized by the relative velocity
only. The computational results of Magnaudet et al. (1995) for a stationary sphere
subjected to a steady axisymmetric straining flow show that Fsv must depend on
both the relative velocity and strain rate. For an ambient flow with arbitrary uniform
and strain-rate components, Fsv can be expected to be influenced by the additional
parameters, such as the axisymmetric or planar nature of strain (fs), and the relative
orientation (Θ and Φ) of the strain-rate tensor with respect to the relative velocity
vector. In this section we will use all available results on steady straining flow past a
stationary sphere to explore the dependence of Fsv. Specifically, the numerical results
of Magnaudet et al. (1995) for axisymmetric straining flows and those of Bagchi
& Balachandar (2002a) for planar straining flows are considered. A wide range of
Reynolds numbers and strain-rate magnitudes is examined. Additionally, for the case
of planar strain, results at different orientations, Θ and Φ , are also considered.

Using the non-dimensionalization given by (2.9), (4.1) can be written in terms of
the drag and lift coefficients. For a general orientation of ambient strain, the drag
and lift coefficients are

CD = CD, sv + 4
3
(1 + CM ) s[(cos 2Θ − fs sin 2Θ) cos 2Φ + (fs − 1) sin 2Φ],

CLY = CLY, sv + 4
3
(1 + CM )

s

2
(fs + 1) sin 2Θ cos Φ,

CLZ = CLZ, sv + 4
3
(1 + CM )

s

2
[fs sin 2Θ − cos 2Θ + (fs − 1)] sin 2Φ,




(4.2)

where the drag coefficient, CD , is the component in the direction of the relative
velocity U r . Since the sphere is stationary, U r may be assumed to be aligned with
the X-direction, without loss of generality. CLY and CLZ are the lift or side force
coefficients in the Y - and Z-directions. When the elongational direction of strain is
aligned with the direction of U r , i.e. Θ = 0, Φ = 0, only drag is generated and the
lift forces are zero. For other orientations of the strain-rate tensor, the lift coefficients
may be non-zero. In particular, we consider the cases Θ = π/4, Φ = 0 and Θ = 0,
Φ = π/4. In the former case, CLY is non-zero, while in the latter, CLZ is non-zero.

The computed drag and lift forces from the simulations of Magnaudet et al.
(1995) and Bagchi & Balachandar (2002a) are used in (4.2) to extract the steady
viscous contribution: CD, sv, CLY,sv and CLZ, sv. These results can be compared with
their counterparts in uniform flow: C0

D, sv, C0
LY, sv and C0

LZ, sv. The standard drag

coefficient, C0
D, sv, is a function of Re alone and is readily obtained from (1.5). For

Re < 210, the lift coefficients C0
LY, sv and C0

LZ, sv are known to be zero. At higher
Reynolds numbers the sphere wake is non-axisymmetric resulting in a net lift force
(Bagchi, Ha & Balachandar 2001). However, the direction of the lift force is arbitrary.
Such complications are not central to our discussion, and we shall simply take
C0

LY, sv = C0
LZ, sv = 0. The comparison is presented in table 2, where for the aligned

cases (Θ = 0, Φ = 0) only CD, sv and C0
D, sv are shown. For the non-aligned cases

(Θ �= 0 or Φ �= 0) both the drag and lift coefficients are compared. Even at a
moderate strain-rate magnitude of 0.1, the difference is significant. For the same
strain magnitude, the difference is somewhat higher for the planar strain than for
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Strain Re s C0
D,sv CD,sv

Axisymmetric 10 0.1 4.31 4.55
100 0.1 1.09 1.19
200 0.1 0.77 0.86
300 0.1 0.65 0.72
10 0.2 4.31 4.78

100 0.2 1.09 1.26
200 0.2 0.77 0.91
300 0.2 0.65 0.79

Planar 10 0.1 4.31 4.68
Θ = 0, Φ = 0 50 0.1 1.57 1.74

100 0.1 1.09 1.23
200 0.1 0.77 0.90
300 0.1 0.65 0.76
10 0.2 4.31 4.97
50 0.2 1.57 1.90

100 0.2 1.09 1.33
200 0.2 0.77 0.96
300 0.2 0.65 0.83
50 0.3 1.57 2.02

C0
LY,sv

CLY,sv

Planar 10 0.1 0 −0.12
Θ = π/4, Φ = 0 50 0.1 0 −0.21

100 0.1 0 −0.24
200 0.1 0 −0.27
300 0.1 0 −0.28
50 0.2 0 −0.30
50 0.3 0 −0.33

C0
D,sv CD,sv C0

LY,sv
CLY,sv

Planar 10 0.1 4.31 4.58 0 −0.07
Θ = π/8, Φ = 0 50 0.1 1.57 1.71 0 −0.13

Planar 10 0.1 4.31 4.13 0 −0.12
Θ = 3π/8, Φ = 0 50 0.1 1.57 1.50 0 −0.17

C0
D,sv CD,sv C0

LZ,sv
CLZ,sv

Planar 10 0.1 4.31 3.65 0 1.24
Θ = 0, Φ = π/4 50 0.1 1.57 1.29 0 0.50

100 0.1 1.09 0.88 0 0.39
200 0.1 0.77 0.63 0 0.34
300 0.1 0.65 0.53 0 0.32
50 0.2 1.57 1.57 0 0.56
50 0.3 1.57 1.68 0 0.67

Table 2. Comparison of the steady viscous force with and without strain.

axisymmetric strain. The influence of strain rate on CLY, sv and CLZ, sv is significant.
It was shown in Bagchi & Balachandar (2002a) that the direction of the lift force
may be opposite to that predicted by the inviscid theory. Accordingly, for the case of
Θ = π/4, Φ = 0, the steady viscous component of the lift coefficient is observed to be
negative.
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Based on the simulation results for the aligned axisymmetric straining flows,
Magnaudet et al. (1995) suggested that the non-inertial effect of strain is primarily
on the viscous drag. In other words, if CD, sv is decomposed into contributions from
pressure and viscous shear stress as CPD, sv and CVD, sv, then Magnaudet et al.’s (1995)
results suggest that CPD, sv is not significantly affected by strain, and it depends only
on Re. CVD, sv, however, is affected by strain and it needs to be parameterized both in
terms of Re and s. The implication is that the strain-induced correction to the pressure
drag is primarily inertial in nature, and therefore the effect of strain is accounted for
in the added-mass and pressure gradient forces, resulting in CPD, sv being independent
of strain. This observation can be verified for the planar strain as well for varying Re

and strain orientation. Similar to (4.2), the pressure drag and lift coefficients can be
written as

CPD = CPD, sv + 4
3
(1 + CM ) s[(cos 2Θ − fs sin 2Θ) cos 2Φ + (fs − 1) sin 2Φ],

CPLY = CPLY, sv + 4
3
(1 + CM )

s

2
(fs + 1) sin 2Θ cosΦ,

CPLZ = CPLZ, sv + 4
3
(1 + CM )

s

2
[fs sin 2Θ − cos 2Θ + (fs − 1)] sin 2Φ.




(4.3)

The pressure component of the total drag and lift forces can be isolated in the
simulations. Then the above equations can be used to estimate the pressure coefficients
CPD, sv etc. These quantities are compared in table 3 with the pressure drag and lift
coefficients under the uniform flow condition, i.e. C0

PD, sv, C0
PLY, sv and C0

PLZ, sv. As
pointed out by Magnaudet et al. (1995), for the case of axisymmetric strain at
Re � 100, CPD, sv ≈ C0

PD, sv. However, for the planar strain cases, even at higher Re,

CPD, sv differs from C0
PD, sv suggesting a viscous effect of strain on the pressure drag.

When the strain-rate tensor is not aligned with relative velocity, the viscous effect of
strain on pressure lift can be observed in table 3. Hence the parameterization of the
steady viscous pressure drag and lift forces also needs to be in terms of both Re and
strain. The dependence on strain is not completely unexpected, because at moderate
Re, the surface pressure distribution is strongly affected by the presence of strain,
and the dependence does not follow the inviscid theory. Further discussion on such
effects is given in Bagchi & Balachandar (2002a).

The results presented in tables 2 and 3 suggest that Fsv is strongly influenced by
the non-uniformity of the ambient flow. The standard drag under uniform flow will
not account for the viscous effects of spatial non-uniformity. The representation of
Fsv must include the local velocity gradient of the ambient flow. In the following,
an invariant representation for Fsv in straining flows is developed followed by an
investigation of its behaviour at moderate Re.

5. Parameterization for Fsv

The results of the previous section indicate that the steady viscous contribution,
Fsv, needs to be parameterized both in terms of the relative velocity, U r , and the
local velocity gradient, ∇U . From its definition, it can be anticipated that Fsv is
independent of unsteadiness in the ambient flow or the sphere (i.e. ∂U/∂t , dV/dt ,
dS/dt , dΩ/dt). Such unsteadiness affects the inertial and history forces. Fsv is entirely
based on the instantaneous state of the ambient flow characterized by U r and ∇U .
Thus, the starting point of a generalized representation is that Fsv is a vector-valued
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Strain Re s C0
PD,sv

CPD,sv

Axisymmetric 10 0.1 1.48 1.55
100 0.1 0.51 0.51
200 0.1 0.41 0.41
300 0.1 0.38 0.38
10 0.2 1.48 1.60

100 0.2 0.51 0.50
200 0.2 0.41 0.41
300 0.2 0.38 0.39

Planar 10 0.1 1.48 1.62
Θ = 0, Φ = 0 50 0.1 0.66 0.70

100 0.1 0.51 0.55
200 0.1 0.41 0.45
300 0.1 0.38 0.41
10 0.2 1.48 1.69
50 0.2 0.66 0.74

100 0.2 0.51 0.57
200 0.2 0.41 0.46
300 0.2 0.38 0.43
50 0.3 0.66 0.77

C0
PLY,sv

CPLY,sv

Planar 10 0.1 0 −0.11
Θ = π/4, Φ = 0 50 0.1 0 −0.18

100 0.1 0 −0.21
200 0.1 0 −0.24
300 0.1 0 −0.25
50 0.2 0 −0.29
50 0.3 0 −0.37

C0
PD,sv

CPD,sv C0
PLY,sv

CPLY,sv

Planar 10 0.1 1.48 1.59 0 −0.07
Θ = π/8, Φ = 0 50 0.1 0.66 0.70 0 −0.11

Planar 10 0.1 1.48 1.49 0 −0.10
Θ = 3π/8, Φ = 0 50 0.1 0.66 0.67 0 −0.14

C0
PD,sv

CPD,sv C0
PLZ,sv

CPLZ,sv

Planar 10 0.1 1.48 1.23 0 0.49
Θ = 0, Φ = π/4 50 0.1 0.66 0.50 0 0.26

100 0.1 0.51 0.37 0 0.23
200 0.1 0.41 0.30 0 0.23
300 0.1 0.38 0.27 0 0.23
50 0.2 0.66 0.61 0 0.33
50 0.3 0.66 0.63 0 0.42

Table 3. Comparison of the pressure component of the steady viscous force with and
without strain.

isotropic function of U r and ∇U = S + Ω . The analysis considers a sphere that is
held stationary, or moving at a constant speed, and here we will restrict attention to
only pure straining flows. The general case of rotational ambient flows is discussed
in the Appendix. Following the representation theorem outlined by Wang (1970) and
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Smith (1971), Fsv can be written as

Fsv = 3πdµ g1 U r + mf g2 U r · S +
mf d

|U r |
g3 U r · S2. (5.1)

The quantities g1, g2, and g3 are dimensionless, and are functions of the entire set of
independent isotropic scalar invariants that can be formed out of U r and S, which
can be chosen as Re, s, fs , Θ and Φ . The first term on the right of (5.1) corresponds to
the Stokes-like drag force. The function g1 can be interpreted as the correction factor
to the Stokes drag for moderate-Re flows. The second and third terms account for
contributions arising from the straining flow. They are similar in nature to the inertial
forces due to convective acceleration in (1.4), except that in (1.4) we have U · ∇U
instead of U r · ∇U . The difference, although subtle, is important. In (1.4) the
inertial forces due to convective acceleration combine with their counterparts due
to temporal acceleration to satisfy Galilean invariance. However, as outlined above,
Fsv is independent of temporal acceleration. Therefore, in order to be invariant
under Gallilean transformation, Fsv should depend on U r , and not on U and V
independently.

The nature of the drag and lift forces observed at moderate Re under planar
(Bagchi & Balachandar 2002a) and axisymmetric (Magnaudet et al. 1995) strain
suggests a complex dependence of g1, g2 etc. on Re, s, fs , Θ and Φ . In this section we
consider specific cases of axisymmetric and planar straining flows with orientations
of Θ = 0, Φ = 0, Θ = π/4, Φ = 0, and Θ = 0, Φ = π/4. The simulation results for
these cases (Bagchi & Balachandar 2002a and Magnaudet et al. 1995) are used to
extract the steady viscous force, Fsv, from which the expressions for g1, g2 and g3 are
obtained.

For the aligned orientation of Θ = 0, Φ = 0, only the drag force exists, and from
(5.1) the steady viscous component of the drag coefficient can be written as

CD, sv =
24

Re
g1 + 4

3
s g2 + 4

3
s2 g3. (5.2)

Since Θ and Φ are fixed, g1, g2 and g3 are functions of Re, s and fs only. It was
shown in Bagchi & Balachandar (2002a) and Magnaudet et al. (1995) that the drag
force can be written as a combination of a baseline drag that is independent of
strain, and a linearly varying contribution due to strain. The baseline drag is simply
the Stokes drag with a moderate-Re correction, which is accounted for in the first
term on the right-hand side of (5.2). The linear variation of the drag coefficient
strain-rate magnitude suggests that g3 is not important in the limit Θ = 0, Φ = 0.
Hence the dependence of g2 on Re for both the planar and axisymmetric strains can
be extracted from the simulation results. The dependence of g1 and g2 with Re is
plotted in figure 7(a) and their approximate expressions are given in table 4.

Next we consider the example of a planar strain whose elongational direction is
aligned at 45◦ to the relative velocity vector (i.e. Θ = π/4, Φ = 0). From (5.1) the
steady viscous component of the drag and lift coefficients can be written as

CD, sv =
24

Re
g1 + 4

3
s2 g3, CLY, sv = 4

3
s g2. (5.3)

If we let g1 remain unaffected by strain, then the dependence of g3 on Re and s can
be extracted. The result is plotted in figure 7(b). The dependence of g2 is directly
obtained from the lift coefficient and is also presented in figure 7(b). Approximate
expressions that fit the data are given in table 4. It is interesting to note that even
though the second term in the expression for CD, sv in (5.3) appears to be quadratic in
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Figure 7. The dimensionless functions for the generalized presentation of Fsv in straining
flows. (a) Θ = 0, Φ = 0: —�—, g1 (in axisymmetric or planar strain); —�—, g2 in
axisymmetric strain; —�—, g2 in planar strain. Note that g1 and g2 for this configuration
are independent of s. (b) Θ = π/4, Φ = 0, planar strain: solid lines indicate g2; broken lines
indicate g3; data shown here are for two different values of s: �, s = 0.1, and �, s = 0.2.

s, the dependence of g3 on s as shown in table 4 makes this term linear. Thus, each
term of the invariant representation (5.1) corresponds to an independent contribution
to the force and must be considered to be on an equal footing.

Next we consider the out-of-plane orientation given by Θ = 0, Φ = π/4. The steady
viscous component for this orientation takes the following form:

CD,sv =
24

Re
g1 + 2

3
sg2 + 2

3
s2g3, CLY,sv = 0, CLZ,sv = − 2

3
s g2 − 2

3
s2 g3. (5.4)

This case clearly illustrates that g1 may not always be approximated by the moderate-
Re correction to the standard drag in a uniform flow. For this orientation of strain
rate we have the constraint

CD,sv + CLZ,sv =
24

Re
g1. (5.5)
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Strain Orientation CD,sv, CLY,sv Functions

Axisymmetric Θ = 0, Φ = 0 CD,sv =
24

Re
g1 + 4

3
sg2 + 4

3
s2g3 g1 = 1 + 0.15Re0.687

CLY,sv = CLZ,sv = 0 g2 =
15

Re
(1 + 0.06Re0.886)

g3 = 0

Planar Θ = 0, Φ = 0 CD,sv =
24

Re
g1 + 4

3
sg2 + 4

3
s2g3 g1 = 1 + 0.15Re0.687

CLY,sv = CLZ,sv = 0 g2 =
13.82

Re
(1 + 0.13Re0.809)

g3 = 0

Planar Θ = 45◦, Φ = 0 CD,sv =
24

Re
g1 + 4

3
s2g3 g1 = 1 + 0.15Re0.687

CLY,sv = 4
3
s g2, CLZ,sv = 0 g2 = − 1

Re
(1 + 5.22Re1.223)(1 − 1.0955s0.095)

g3 =
11.14

s Re
(1 + 0.002Re1.663)

Planar Θ = 0, Φ = 45◦ CD,sv =
24

Re
g1 + 2

3
sg2 + 2

3
s2g3 g1 = (1 + 0.15Re0.687)(1 + 1.7801s)

CLZ,sv = − 2
3
s g2 − 2

3
s2 g3 g2 + sg3 = − 24

Re
(1 + 1.41Re0.63)(1 − 0.3s + 5s2)

CLY,sv = 0

Table 4. Dimensionless functions used in the parameterization of Fsv.
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Strain Re s (24/Re)g1
4
3
sg2

4
3
s2g3

4
3
(1 + CM )s

Axisymmetric 10 0.1 4.31 (100%) 0.24 (5.5%) 0 0.2 (4.6%)
100 0.1 1.09 (100%) 0.10 (9.2%) 0 0.2 (18%)
200 0.1 0.77 (100%) 0.09 (12%) 0 0.2 (26%)
300 0.1 0.65 (100%) 0.07 (11%) 0 0.2 (31%)
10 0.2 4.31 (100%) 0.47 (11%) 0 0.4 (9.3%)

100 0.2 1.09 (100%) 0.17 (16%) 0 0.4 (37%)
200 0.2 0.77 (100%) 0.14 (18%) 0 0.4 (52%)
300 0.2 0.65 (100%) 0.14 (22%) 0 0.4 (62%)

Planar 10 0.1 4.31 (100%) 0.37 (8.6%) 0 0.2 (4.6%)
Θ = 0, Φ = 0 50 0.1 1.57 (100%) 0.17 (11%) 0 0.2 (13%)

100 0.1 1.09 (100%) 0.14 (13%) 0 0.2 (18%)
200 0.1 0.77 (100%) 0.13 (17%) 0 0.2 (26%)
300 0.1 0.65 (100%) 0.11 (17%) 0 0.2 (31%)
10 0.2 4.31 (100%) 0.66 (15%) 0 0.4 (9.3%)
50 0.2 1.57 (100%) 0.33 (21%) 0 0.4 (25%)

100 0.2 1.09 (100%) 0.24 (22%) 0 0.4 (37%)
200 0.2 0.77 (100%) 0.19 (25%) 0 0.4 (52%)
300 0.2 0.65 (100%) 0.18 (28%) 0 0.4 (62%)
50 0.3 1.57 (100%) 0.45 (29%) 0 0.6 (38%)

Planar 10 0.1 4.31 (100%) −0.12 (2.8%) 0.16 (3.8%) 0.2 (4.6%)
Θ = π/4, Φ = 0 50 0.1 1.57 (100%) −0.21 (13%) 0.07 (4.4%) 0.2 (13%)

100 0.1 1.09 (100%) −0.24 (22%) 0.08 (7.3%) 0.2 (18%)
200 0.1 0.77 (100%) −0.27 (35%) 0.11 (14%) 0.2 (26%)
300 0.1 0.65 (100%) −0.28 (43%) 0.14 (22%) 0.2 (31%)
200 0.2 0.77 (100%) −0.34 (44%) 0.21 (28%) 0.4 (52%)
300 0.3 0.65 (100%) −0.47 (72%) 0.41 (63%) 0.6 (92%)

24
Re

g1 − 2
3
sg2 − 2

3
s2g3

2
3
(1 + CM )s

Planar 10 0.1 4.89 (113%) 1.24 (29%) 0.1 (2.3%)
Θ = 0, Φ = π/4 50 0.1 1.79 (114%) 0.50 (32%) 0.1 (6.4%)

100 0.1 1.27 (117%) 0.39 (36%) 0.1 (9.2%)
200 0.1 0.97 (126%) 0.34 (44%) 0.1 (13%)
300 0.1 0.85 (131%) 0.32 (49%) 0.1 (14%)
50 0.2 2.13 (136%) 0.56 (36%) 0.2 (13%)
50 0.3 2.35 (150%) 0.67 (43%) 0.3 (19%)

Table 5. Absolute and relative magnitude of first- and second-order correction terms due to
g1, g2 and g3. The percentage differences compared to Schiller–Neumann drag are given in
brackets.

Then g1 computed based on the above sum of the steady viscous drag and lift forces
shows a linear dependence on s, and the best fit to the computational results is shown
in table 4. An approximate expression for g2 + s g3 is given in table 4.

The steady viscous drag for a uniform ambient flow, as given in (1.5), is simple and
well-established to be accurate over a wide range of Re. In comparison, the expression
for the steady viscous drag in a non-uniform ambient flow, as given in (5.1) and table
4, is more complex, due to the added parameters involved, and furthermore is limited
to only certain orientations of the strain rate. The relative importance of these
added effects of inhomogeneity on the steady viscous force must be established. The
magnitudes of the three contributions due to g1, g2 and g3 are shown in table 5.
The relative magnitudes of these terms are also expressed as a percentage (shown
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within parentheses) of the steady viscous drag of the corresponding uniform flow.
Also shown in the table is the inertial force arising from the strain rate. For all cases
except when Θ = 0, Φ = π/4, the first term, (24/Re)g1, is the same as the steady
viscous drag of the corresponding uniform flow. For the case of Θ = 0, Φ = π/4, the
g1 contribution is higher than the Schiller–Neumann drag by as much as 50%. The
percentage contributions from the g2 and g3 terms increase with both Re and s. This
trend is also the same for the inertial force. In the case of aligned planar strain at low
Re, the g2 contribution is of the same order as the inertial one. As Re increases, the
inertial effect begins to dominate. For the non-symmetric case of Θ = π/4, Φ = 0,
the effects of g2 and g3 are of the order of the inertial effect over the entire range of
Re and s considered. Finally, for the case of Θ = 0, Φ = π/4, contributions from g2

and g3 are substantially larger than the inertial effect.

6. Unsteady motion of a sphere
Table 4 provides a detailed characterization of the steady viscous component of

the drag and lift forces for a straining ambient flow at selected orientations of 0◦

or 45◦ to the relative velocity vector. The objective of this section is to evaluate the
suitability of such a characterization of the steady viscous force along with the inertial
forces in predicting the free translation of a sphere, without accounting for the history
force.

Here we will consider simulations of a freely translating sphere in steady axisym-
metric or planar straining flows. The sphere is typically released from rest, and it
accelerates and attempts to catch up with the ambient flow. The time evolution of the
exact drag and lift forces on the sphere is obtained from direct numerical simulations
by integrating the surface distribution of the pressure and shear stresses. The exact
results are compared with three different estimates based on the instantaneous local
flow conditions. The simplest estimate is based on the steady viscous drag for a
uniform flow, as given in (1.5), and it ignores all effects of temporal acceleration
of the sphere, and the convective acceleration of the ambient flow. This estimate is
purely based on the instantaneous relative velocity. In the second estimate we include
the inertial forces due to the acceleration of the sphere and the fluid. In the final
estimate we also include the viscous effect of straining motion by considering the
total force as the sum of the steady viscous drag for non-uniform flow (as given in
§ 5) and the inertial contribution. The difference between the three estimates will serve
to highlight the importance of the effects that have been included progressively. The
only effect that has not been included in the third estimate is the history force. As a
result, the difference between the third estimate and the exact DNS result will be the
history force.

In the direct numerical simulations, the sphere is initially held fixed in a steady
linearly varying ambient flow and a fully developed steady solution is obtained. The
centre of the sphere is initially located at the origin of the fixed coordinate system
(X = 0). At t = 0, the sphere is released and is allowed to move in response to
the hydrodynamic forces acting on it. The motion of the sphere is given by (2.10).
The sphere to fluid density ratio (ρp/ρf ) is an important parameter that controls the
motion of the sphere. As the sphere moves in the non-uniform flow, the ambient
condition at the boundary of the computational domain changes. At each time step,
the net flow field is updated using the new boundary condition. The drag and lift forces
acting on the sphere are computed at each time step by integrating the pressure and
viscous stresses on the surface of the sphere. Three different test cases are chosen:
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Figure 8. Freely moving sphere in linearly varying flows: (a) axisymmetric converging flow
(Θ = 0, Φ = 0); (b) planar straining flow at Θ = π/4, Φ = 0; (c) planar straining flow at
Θ = 0, Φ = π/4.

(i) the unidirectional motion of a sphere in an axisymmetric converging stream,
(ii) the motion of a sphere in a planar straining flow where the relative velocity lies in
the plane of strain, and (iii) the motion of a sphere in a planar straining flow where
the relative velocity is at an angle to the plane of strain. The flow configurations for
these cases are shown in figure 8.

6.1. Axisymmetric converging stream

First we present the results for unsteady unidirectional motion of a freely moving
sphere in an axisymmetric straining flow. The ambient flow is given by figure 8(a)

UX = U0 + σX, UY = −σ

2
Y, UZ = −σ

2
Z. (6.1)

At t = 0 the relative velocity of the sphere, U r , and the elongational axis of the strain-
rate tensor are aligned with the positive X-axis (Θ = 0, Φ = 0). Due to the symmetric
nature of the flow about the X-axis, the sphere experiences only a drag force along
U r , and hence its motion is naturally confined to this axis. First we will consider
the case of a sphere to fluid density ratio ρp/ρf = 5. The instantaneous Reynolds
number, Re = |U r |d/ν, and strain magnitude, s = σd/|U r |, are defined based on the
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Figure 9. The instantaneous sphere Reynolds number in converging flows. On the left scale:
——, initial Re0 = 200, s0 = 0.1, ρp/ρf = 5; — — —, Re0 = 200, s0 = 0.1, ρp/ρf = 500. On the
right scale: — - — - —, Re0 = 10, s0 = 0.2, ρp/ρf = 5; - - - -, Re0 = 10, s0 = 0.2, ρp/ρf = 500.

local relative velocity, U r = U(X, t) − V (t). In the following discussion, a tilde is used
when a variable is made dimensionless with respect to the initial relative velocity
U r (t = 0); thus t̃ = t |U r (t = 0)|/d , Ũ = U/|U r (t = 0)| etc. The initial Reynolds
number, based on the initial relative velocity Re0 = |U r (t = 0)|d/ν, is 200 and the
initial strain magnitude, s0 = σd/|U r (t = 0)| is 0.1. The sphere is released at t̃ = 0
from a fully developed steady flow field. Under the influence of converging ambient
flow, the sphere accelerates continuously. For a short period of time, the relative
velocity and hence the instantaneous sphere Reynolds number decreases. However,
with time, the fluid velocity increases faster than the sphere velocity and hence the
instantaneous Reynolds number increases. Figure 9 shows the instantaneous Re with
time. At t̃ = 40, the sphere Re reaches 557. Note that at Re greater than about 300,
the wake in a uniform flow shows vortex shedding and hence becomes unsteady and
three-dimensional. It was shown in Bagchi & Balachandar (2002b) that the effect of
elongational strain is to stabilize the wake and delay the onset of vortex shedding, and
the wake remains axisymmetric. Based on this result, only axisymmetric simulations
are performed for the case of converging straining flows considered here.

The temporal behaviour of the unsteady force acting on the sphere is shown
in figure 10(a). The quantity plotted here is CD as defined in (2.9) multiplied by
|Ũ − Ṽ |2, representing the actual force in dimensionless form. The simulation results
are compared to the three different estimates of the unsteady force, termed E1, E2
and E3. For the present case of axisymmetric ambient flow, the drag coefficient for
the three estimates can be written as

E1 : C0
D =

24

Re
(1 + 0.15 Re0.687), (6.2)

E2 : C0
D + 4

3
(1 + CM ) s

|U |
|U − V | − 4

3
CM

d

|U − V |2
dV

dt
, (6.3)

E3 : CD,sv + 4
3
(1 + CM ) s

|U |
|U − V | − 4

3
CM

d

|U − V |2
dV

dt
, (6.4)
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Figure 10. Unsteady force on a sphere moving in an axisymmetric converging strain.
Θ = 0, Φ = 0. ρp/ρf = 5. (a) Initial Re0 = 200, s0 = 0.1. (b) Initial Re0 = 10, s0 = 0.2.
——, DNS result; - - - - - -, Schiller–Neumann drag (6.2); �, prediction by (6.3); and �,
prediction by (6.4).

where CM is taken to be 1/2 and CD, sv is given by (5.2) with g1 and g2 given in
table 4 for the axisymmetric case. As seen in figure 10(a), (6.3) and (6.4) capture the
time evolution of the unsteady force quite well, indicating that the correction to the
steady viscous force due to ambient straining motion is not important for the present
case. However, the inclusion of the inertial force is quite important as (6.2) tends to
significantly underpredict the force. Furthermore, the good agreement between the
DNS result and (6.4) suggests that the history effect is not significant for the present
case of a freely moving sphere in a converging flow. This may be due to the fact that
in a converging flow the wake activity is significantly suppressed (Magnaudet et al.
1995 and Bagchi & Balachandar 2002a).

A breakdown of the various contributions to the total force is shown in figure 11(a),
where the time history of the following forces are plotted: (a) the Stokes-like drag
given by (24/Re) g1; (b) the steady viscous contribution from the strain rate given
by (4/3) s g2; (c) the inertial force due to local convective acceleration of the fluid
given by the second term in (6.4); (d) the added-mass force due to the temporal
acceleration of the sphere given by the third term in (6.4) and (e) the history force.
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Figure 11. Components of the total force in axisymmetric converging flow. (a) Initial Re0 =
200, s0 = 0.1, ρp/ρf = 5. (b) Initial Re0 = 10, s0 = 0.2, ρp/ρf = 500. ——, Total force,
CD; - - - - -, contribution from the Stokes-like drag, 24/Reg1; — — —, contribution of
strain to non-inertial force, (4/3), g2s; – - – - –, inertial forces from convective acceleration,
(4/3) (1 + CM )s|U |/|U − V |; – - - – - - –, added-mass force from particle acceleration, (4/3)
CM (dV/dt)d/|U − V |2; · · · , the history force. These quantities are plotted after multiplying by

|Ũ − Ṽ |2.

The history force is computed as the difference between the DNS result and the
estimation from (6.4). It is clear from the figure that the Stokes-like drag and the
effect of convective acceleration of the fluid are the two most important quantities.
The former can account for nearly 50% of the total force, while the contribution from
the latter can be as high as 40%, near the end of the simulation. The contribution
arising from the acceleration of the sphere is at the most 9% of the total force. The
other contributions, such as that from the history force, are even smaller.

For the present case, the strain-induced viscous correction (4/3) s g2 is much smaller
than the inertial forces. This is not surprising, since in table 5 the g2 contribution was
observed to be about three times less than the inertial forces for a stationary sphere in
axisymmetric strain. During the unsteady motion considered here, the g2 contribution
is further reduced. This is due to the fact that this contribution is proportional to the
relative velocity U r (see (5.1)), whereas the inertial effect is proportional to the local



136 P. Bagchi and S. Balachandar

fluid velocity U . In an accelerating flow, such as the one considered here, the local
fluid velocity is an order of magnitude higher than the relative velocity. Thus, the
strain-induced viscous correction is significantly overshadowed by the inertial effect.
On the other hand, in cases where the relative velocity and the local fluid velocity are
of the same order, such as in the case of a sphere moving close to a stagnation point,
the strain-induced viscous correction can be expected to be at least as important as
the inertial effect.

A different case with a lower initial sphere Reynolds number of Re0 = 10 and
strain magnitude s0 = 0.2 is considered next. The sphere to fluid density ratio is
ρp/ρf = 5, which is the same as in the previous example. As before, the sphere is
released at t̃ = 0 and it accelerates continuously under the converging straining flow.
At first, the acceleration of the sphere is high and the relative velocity decreases. The
instantaneous Reynolds number decreases to 3.2 at t̃ = 4.5 (see figure 9). Beyond
this, the relative velocity starts increasing and at t̃ = 22, the sphere Reynolds number
reaches 37. The unsteady drag measured from the simulation and the predictions
by (6.2)–(6.4) are shown in figure 10(b). The general trend is similar to the previous
case of Re0 = 200 shown in figure 10(a). The contribution from the strain-induced
viscous correction g2 is now somewhat increased. This behaviour is consistent with
the low-Re result seen in table 5.

The case of a higher density ratio of ρp/ρf = 500 is considered next for an initial
Reynolds number of Re0 = 200 and s0 = 0.1. The variation of the instantaneous
sphere Reynolds number with time is shown in figure 9. Unlike the low-density cases
described above, the heavy sphere accelerates slowly. As a result, the relative velocity
increases at a slower rate and at t̃ = 44, the sphere Reynolds number is not much
higher than 200. The time evolution of the drag force on the sphere is shown
in figure 12(a). For such a heavy particle the pressure gradient and added-mass
forces are often dismissed as being small. However, from figure 12(a) it is clear
that (6.2) significantly underpredicts the drag force. The inertial forces make a
substantial contribution to the total drag force and it arises mostly from the convective
acceleration due to the ambient strain rate. The strain-induced viscous correction g2,
although smaller in magnitude than the inertial effect, is not entirely negligible and
its inclusion improves the estimation of the total drag force. As in the previous cases
the history force remains small and its neglect appears to be well justified. A similar
observation can be made in figure 12(b) where results for the case of initial Re0 = 10
and s0 = 0.2 are shown for a density ratio 500.

The detailed breakdown of the different components of the net force for the
case of ρp/ρf = 500 with initial Re0 = 10 and s0 = 0.2 is shown in figure 11(b).
As expected, the Stokes-like contribution associated with the function g1 is the
dominant component. All other contributions are significantly less. Nevertheless, of
the remaining components, the inertial contribution from the convective acceleration
is the largest.

6.2. Planar straining flow at Φ = 0

The example considered next is the free translation of a sphere in a planar straining
flow at an angle to the principal axes of strain rate. The flow configuration for this
case is shown in figure 8(b). The ambient flow is given by

UX = U0 + σY, UY = σX, UZ = 0. (6.5)

The converging direction of the straining flow is oriented at 45◦ to the positive X-axis.
At t̃ = 0, the centre of the sphere coincides with X = 0: until this time the sphere
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|Ũ

–Ṽ
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Figure 12. Unsteady force on a heavy sphere of ρp/ρf = 500 moving in an axisymmetric strain.
(a) Initial Re0 = 200, s0 = 0.1. (b) Initial Re0 = 10, s0 = 0.2. ——, DNS result; - - - - - - -,
Schiller–Neumann drag (6.2); �, prediction by (6.3); �, prediction by (6.4).

is held fixed. The initial flow field at t̃ = 0 is a quasi-steady solution for a constant
relative velocity and corresponds to the initial values Re0 = 200 and s0 = 0.1. At t̃ = 0
the relative velocity is taken to be aligned with the positive X-axis. Thus, at t̃ = 0, the
angle between the relative velocity and the converging direction of strain is Θ = 45◦.
In this configuration, the sphere experiences both the drag and lift forces. As a result,
the free motion of the sphere is no longer rectilinear. For t̃ � 0, the sphere is allowed
to freely translate in response to the hydrodynamic forces acting on it. As it moves in
the straining flow, both the magnitude and direction of the relative velocity change.
As a result, the angle Θ between the relative velocity vector and the straining flow
changes with time. Figure 13(a) shows the sphere trajectory obtained from the direct
numerical simulation for the case of ρp/ρf = 5. At the start, the centre of the sphere
is located at the origin shown near the bottom left corner of the figure. At t̃ = 20,
it is located at X/d ≈ 13, Y/d ≈ 5. The instantaneous sphere Reynolds number and
the angle Θ are plotted in figure 13(b). The variation of Re over time is similar to the
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Figure 13. Unsteady motion of a sphere in a planar straining flow at initial Θ = π/4. Initial
Re0 = 200, s0 = 0.1 and ρp/ρf = 5. (a) Particle trajectory. (b) ——, instantaneous Reynolds
number; and - - - - - - -, instantaneous relative angle Θ .

previous cases, i.e. an initial decrease in Re followed by a continuous increase. The
angle Θ changes from its initial value of 45◦ to −14◦ at t̃ = 20.

As before, the three different estimates of the drag and lift coefficients for this
configuration can be written as

E1 : C0
D =

24

Re
(1 + 0.15 Re0.687), CL = 0, (6.6)

E2 : CD = C0
D + IFD, CL = IFL, (6.7)

E3 : CD = CD,sv + IFD, CL = CL,sv + IFL, (6.8)

where the inertial components IFD and IFL are given by
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IFD = 4
3
(1 + CM ) s

U‖ cos 2Θ + U⊥ sin 2Θ

|U r |
− 4

3
CM

d

|U r |2
dV ‖

dt
, (6.9)

IFL = 4
3
(1 + CM ) s

U‖ sin 2Θ − U⊥ cos 2Θ

|U r |
− 4

3
CM

d

|U r |2
dV⊥

dt
. (6.10)

Here the drag force is in the direction of the instantaneous relative velocity and
the lift force is perpendicular to it. The symbols ‖ and ⊥ are used to indicate the
components parallel and perpendicular to U − V . The steady viscous components,
CD, sv and CL, sv, are computed using (5.1) and can be written as

CD, sv =
24

Re
g1 + 4

3
g2 s cos 2Θ + 4

3
g3 s2, (6.11)

CL, sv = 4
3
g2 s sin 2Θ. (6.12)

Note that the functions g1, g2 and g3 are now dependent on the instantaneous Re,
s and Θ . Steady-state simulations, similar to those reported in § 5, over a range
of Re and s at Θ = 0, π/8 and π/4 are used to compute these functions. For any
intermediate Θ , their values are obtained by interpolation. Also note that the values of
these functions at negative Θ can be obtained from those of positive Θ by appropriate
symmetry.

The above three estimates along with the exact DNS results are shown in figure 14.
Here the X- and Y -components of the total force coefficient are plotted as a function
of time after multiplication by |Ũ − Ṽ |2. As in the previous examples, the use of (6.6)
leads to a significant underprediction of both the X and Y components of the force.
Inclusion of the inertial terms as in (6.7) improves the estimation. However, (6.7)
still underpredicts the X force between 5 < t̃ < 15, and significantly overpredicts the
Y force at the beginning. The estimate is further improved when the strain-induced
viscous correction terms g2 and g3 are included, as given by (6.8). The difference
between the estimation based on (6.8) and the DNS results suggests that the history
force, although not entirely negligible, still remains small. The detailed breakdown
of the various contributions to the total force is shown in figure 15. It can be seen
that the inertial effect of ambient strain rate is a dominant force comparable to the
Schiller–Neumann drag (6.6). In the X-component of the force, the g2 contribution
may be nearly 30%, while the g3 contribution can be as high as 43%. In the Y -
component of the force, the g2 contribution constitutes nearly the entire viscous force
at the beginning. Near the end, the g2 contribution drops, while the g3 contribution
becomes 35% of the total force. Contributions from the acceleration of the sphere
and the history force are much smaller.

6.3. Planar straining flow at Θ = 0

Next we consider another example of planar straining flow where the relative velocity
is at an angle to the plane of strain (figure 8c). The ambient flow is given by

UX = U0 +
σ

2
(X − Z), UY = −σY, UZ =

σ

2
(−X + Z). (6.13)

The plane of strain makes a 45◦ angle to the positive X-axis. Until t̃ = 0, the sphere is
held fixed at X = 0. The initial flow field at t̃ = 0 is taken as a quasi-steady solution
that corresponds to an initial Re0 = 300, s0 = 0.1. In this configuration, the sphere
experiences forces along the X- and Z-axes (see § § 4 and 5). The sphere is released
at t̃ = 0 and allowed to freely translate under the hydrodynamic force. At t̃ = 0, the
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Figure 14. Unsteady force on a sphere moving in a planar straining flow. Initial
Re0 = 200, s0 = 0.1, and ρp/ρf = 5. (a) Force in the X-direction; (b) force in the Y -direction.
——, DNS result; - - - - - - - -, prediction by the Schiller–Neumann drag (6.6); �, prediction by
(6.7); �, prediction by (6.8).

angle between the relative velocity and the plane of strain is Φ = 45◦. As the sphere
moves in the straining flow, the angle Φ changes with time.

The three estimates of the drag and lift coefficients for this configuration can be
written as

E1 : C0
D =

24

Re
(1 + 0.15 Re0.687), CL = 0, (6.14)

E2 : CD = C0
D + IFD, CL = IFL, (6.15)

E3 : CD = CD,sv + IFD, CL = CL,sv + IFL, (6.16)

where the inertial components IFD and IFL are given by

IFD = 2
3
(1 + CM ) s

U‖ cos2 Φ − U⊥ sin Φ cos Φ

|U r |
− 4

3
CM

d

|U r |2
dV ‖

dt
, (6.17)
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Figure 15. Contributions to the total force on the sphere moving in the planar straining flow.
Re0 = 200, s0 = 0.1, and ρp/ρf = 5: (a) forces in the X-direction; (b) forces in the Y -direction.
——, Total force (from DNS result); - - - - - -, contribution from g1 (Schiller–Neumann drag);
�, contribution from g3; �, contribution from g2; �, contribution from convective acceleration;
�, contribution from particles’s acceleration; �, transient non-inertial force (history).

IFL = 2
3
(1 + CM ) s

−U‖ sin Φ cos Φ + U⊥ sin2 Φ

|U r |
− 4

3
CM

d

|U r |2
dV⊥

dt
. (6.18)

Here the drag force is along the direction of the instantaneous relative velocity and
the lift force is perpendicular to it. The symbols ‖ and ⊥ are again used to indicate
the components parallel and perpendicular to U − V . The steady viscous components,
CD, sv and CL, sv, are again computed using the expression (5.1) and can be written as

CD, sv =
24

Re
g1 + 4

3
s cos2 Φ (g2 + sg3), (6.19)

CL, sv = − 4
3
s sin Φ cosΦ (g2 + sg3). (6.20)

Note that the functions g1, g2 and g3 are dependent on the instantaneous values of
Re, s and Φ . Steady-state simulations, similar to those reported in § 5, over a range
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Figure 16. Unsteady force on a sphere moving in a Φ = π/4,Θ = 0 planar straining flow.
Initial Re0 = 300, s0 = 0.1, and ρp/ρf = 5. (a) Force in the X-direction, CX(Ũ − Ṽ )2; (b) force

in the Z-direction, CZ(Ũ − Ṽ )2. ——, DNS result; - - - - - -, prediction by the Schiller–Neumann
drag (6.14); �, prediction by (6.15); �, prediction by (6.16).

of Re and s at different Φ = 0, π/8 and π/4 are used to compute these functions
(Bagchi & Balachandar 2002a). For any intermediate Φ , their values are obtained by
interpolation.

The above three estimates along with the exact DNS results are shown in figure 16.
Here the X- and Z-components of the total force coefficient are plotted as a function
of time after multiplication by |Ũ − Ṽ |2. It is clear from the figure that the use
of (6.14) leads to overprediction of the X-component and underprediction of the
Z-component of force. Most interestingly, unlike in the previous two examples, the
inclusion of the inertial terms worsens the prediction. However, the exact DNS result
can be approximated well when the strain-induced corrections given by g2 and g3 are
retained.

The detailed breakdown of the various contributions to the total force is shown
in figure 17. In the X-component, the significant contributions come from g1, g2 and
g3. The inertial contributions are much smaller. Also note that the g1 term can be
different from the Schiller–Neumann correction (see § 5). In the Z-component, the
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Figure 17. Breakdown of various contributions to the total force on the sphere moving in the
Φ = π/4,Θ = 0 planar straining flow. Re0 = 300, s0 = 0.1, and ρp/ρf = 5. (a) Forces in the
X-direction, and (b) forces in the Z-direction. - - - - - - -, Contribution from Schiller–Neumann
drag; –�–, contribution from g1; –�–, contribution from g2 and g3; –�–, contribution from
inertial force (added-mass + pressure gradient); –�–, history force.

major contribution comes from the g2 and g3 terms. At first, the g1 contribution is
small, and the inertial contribution comprises the rest of the force. Near the end, the
g1 contribution is of the same order as the inertial one. The history force remains
negligible in both the X- and Z-components.

7. Conclusion
In this paper we have numerically investigated the effect of spatial non-uniformity

in the ambient flow on the equation of motion of a sphere at moderate sphere
Reynolds number. A pseudospectral-based DNS methodology is used to solve the
detailed flow field around a freely translating sphere in a linearly varying ambient
flow (∇U = constant). The ambient flow considered here is irrotational and the sphere
Re is in the range 10 to 300. Different contributions to the total force on the sphere,
namely the inertial (the added-mass and pressure gradient) forces, the steady viscous
force, and the unsteady viscous force (history force), are numerically estimated in a
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systematic way in the context of ambient straining flows. The objective of the paper
is four-fold:

(a) To isolate the added-mass force due to convective acceleration of the ambient
flow.

(b) To establish the effect of ambient strain on the steady viscous force and obtain
a parameterization for Fsv for a few chosen orientations of the ambient strain
rate.

(c) To validate the parameterization under unsteady conditions by considering a
DNS of a freely translating sphere in straining ambient flows.

(d) To estimate the history force in non-uniform irrotational flows.
The important results are summarized below.

(a) Added-mass force: In a non-uniform flow, such as the straining flow considered
here, the isolation of the added-mass force from the total is difficult since the ambient
strain modifies not only the inertial forces, but also the viscous forces. In axisymmetric
straining flows, the difference between the pressure drag with and without strain is
nearly equal to the added-mass effect, which was exploited by Magnaudet et al.
(1995) in establishing the added-mass coefficient. However, this is not the case for
planar strain, particularly when the strain is oriented at an angle to the relative
velocity. Therefore, in order to isolate the added-mass forces under such conditions,
we consider DNS of rapidly imposed straining flows past a sphere. By monitoring
the rapid changes in the drag and lift forces on the sphere over a short time scale in
response to the rapidly imposed external strain, we isolate the inertial effect due to
the convective acceleration of the ambient flow.

This methodology is similar to that used by Rivero et al. (1991) and Chang &
Maxey (1995) where they considered the inertial effect of temporal acceleration in
a uniform ambient flow. Here we extended this methodology to consider straining
flows. The DNS results show that the added-mass effect at moderate Re arising from
convective acceleration of the ambient flow follows the inviscid flow results. A wide
variety of straining flows are considered over a range of Re, and for all the cases the
inviscid theory is shown to be applicable.

(b) Steady viscous force: Knowing the inertial forces we proceed to estimate the
effect of ambient strain rate on the steady viscous force. Numerical results for
steady axisymmetric (Magnaudet et al. 1995) and planar straining flows (Bagchi &
Balachandar 2002a) past a stationary sphere are used to estimate the steady viscous
force Fsv. Under steady conditions, the history force is zero. Then Fsv can be isolated
by subtracting the inertial forces from the total drag and lift. In a uniform ambient
flow, Fsv is represented well by the Schiller–Neumann drag. In the presence of ambient
strain, it is shown here that Fsv is significantly influenced by and strongly dependent
on the magnitude and orientation of the strain rate.

A parameterization for Fsv in terms of relative velocity and the local velocity
gradient is presented. At low Re, when the principal direction of the strain rate is
aligned with the direction of relative velocity, the strain-induced viscous corrections
to Fsv are comparable to the inertial forces. With increasing Re the inertial forces
outweigh the viscous corrections. However, when the principal directions of the strain
rate are not aligned with the direction of relative velocity, the strain-induced viscous
corrections to Fsv can be strong and more important than the inertial forces.

(c) DNS of a freely translating sphere: The importance of the inertial forces
and the strain-induced modifications to Fsv is further validated by considering the
unsteady motion of a rigid sphere. Direct numerical simulations of a freely translating
sphere in axisymmetric and planar straining flows are performed. The exact unsteady
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forces obtained from the DNS are compared with three different estimates: (i) the
Schiller–Neumann drag, (ii) the Schiller–Neumann drag, plus the inertial forces, and
(iii) the Schiller–Neumann drag, plus the strain-induced correction to Fsv, plus the
inertial forces. Here it must be stressed that while the Schiller–Neumann drag and the
inertial forces are well-established, the dependence of Fsv on ambient strain is quite
complex. The parameterization for Fsv obtained here is limited to only axisymmetric
and planar strains and is valid only over a limited range of Re, strain-rate magnitudes
and orientations. It is thus of interest to examine when the strain-induced correction to
Fsv is important, for otherwise the estimation can be based on the Schiller–Neumann
drag, plus the inertial forces alone.

For all the cases considered, the estimation based on the Schiller–Neumann drag
significantly deviates from the exact results. In most cases, the inclusion of the inertial
forces significantly improves the estimation of the actual forces. In cases where the
motion of the sphere is aligned with the extensional direction of the ambient strain
rate, the inertial forces generally outweigh the strain-induced corrections in Fsv. As
a result, a satisfactory prediction of the total force can be made based on only
the Schiller–Neumann drag, plus the inertial forces. In contrast, in cases where the
sphere moves at an angle to the principal directions of the ambient strain rate, the
strain-induced viscous corrections are important and at times outweigh the inertial
forces. In such cases, it appears that all three contributions (as included in the third
estimate) are necessary for an accurate representation of the total forces.

(d) History force: A general expression for the history force, in particular in a
non-uniform ambient flow, is likely to be quite complex, and is not the central theme
of this paper. Nevertheless, two important observations can be made about the history
force from the present results. First, in the context of rapidly imposed straining flows,
it is shown that the history kernels of the form (3.21) proposed by Mei & Adrian
(1992), which perform very well in a uniform flow, are not adequate to capture the
effect of convective acceleration. It is also shown that the history force masks the
inertial effect of convective acceleration when a pure straining flow is imposed on a
viscously saturated initial flow. In such cases of rapid acceleration, the history force
is significant. Therefore, neglecting this force will result in large errors.

However, the rapid acceleration case considered in § 3 is only to isolate the inertial
forces over a very short time. In most applications, the acceleration seen by the sphere
will not be so rapid, and as a result the history force is not likely to be as high. This
is indeed verified by DNS of a freely translating sphere in straining flows. In all the
cases considered, for varying ambient strain nature, magnitude and orientation, the
total force acting on the sphere over the entire computed period of its free translation
can be estimated well without accounting for the history force. This is because for a
rigid sphere in free translation in straining flows, the time history of the convective
or temporal acceleration seen by the sphere is not strong enough to generate a large
history force. Thus, neglecting the history force will not result in a large error in these
cases. The inertial forces combined with the correct parameterization for the steady
viscous force will provide a reasonable estimate for the exact force on the sphere.

Finally, it should be pointed out that the present paper does not consider the
effect of free rotation of the sphere. A freely moving sphere will rotate under the
hydrodynamic torque acting on it in addition to its translational motion in response
to the hydrodynamic forces. In most of the cases considered here, one of the principal
axes of the strain rate aligns with the direction of relative velocity. Due to the
symmetry of such cases there is no net hydrodynamic torque on the sphere, and
therefore the present simulation of a non-rotating sphere is appropriate. This, however,
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is not the case when the sphere moves at an angle to the principal axes of the ambient
strain rate. We have performed additional numerical simulations for such cases to
consider freely translating and rotating spheres. The results show that over the range of
parameters explored here, the free rotation of the sphere has little effect on the forces.
Therefore, the conclusions drawn above remain appropriate even when the sphere is
allowed to both translate and rotate. Similar observations on the relative insensitivity
of the lift and drag forces to free rotation of the sphere have recently been made in
the context of linear shear flows (Bagchi & Balachandar 2002b).
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Appendix. Generalized representation for Fsv

The parameterization for Fsv in pure straining flows was given in § 5. Here we
consider the general case of any linear rotational or irrotational ambient flow.
Following the representation theorem outlined by Wang (1970) and Smith (1971),
Fsv can be written as

Fsv = 3πdµ g1 U r + mf g2 U r · S +
mf d

|U r |
g3 U r · S2

+ mf g4 U r · Ω +
mf d

|U r |
g5 U r · Ω2 +

mf d

|U r |
g6 U r · (SΩ − ΩS). (A 1)

The first term on the right corresponds to the Stokes-like drag force. The second and
third terms account for additional contributions arising from the strain component
of the ambient flow. The fourth and fifth terms similarly account for contributions
arising from the rotational component. The last term represents a contribution due
to the interaction between the strain and rotational components. The dimensionless
quantities g1, g2, etc., are functions of a set of isotropic scalar invariants, from U r , S
and Ω . The following irreducible list shows all the isotropic scalar invariants arranged
in three groups, G1, G2 and G3:

G1 : U r · U r , tr(S), tr(S2), tr(S3), tr(Ω2),

G2 : U r · SU r , U r · S2U r , U r · Ω2U r , tr(SΩ2), tr(S2Ω2), tr(S2Ω2SΩ),

G3 : U r · SΩU r , U r · SΩ2U r , U r · ΩSΩ2U r , U r · S2ΩU r .


 (A 2)

The first group accounts for all the fundamental scalar invariants; U r · U r measures
the magnitude of the relative velocity and tr(Ω2) = −2|ω|2 measures the rotational
rate of the ambient flow, where ω is the ambient vorticity measured at the centre. In
an incompressible fluid tr(S) = 0. The term tr(S2) can be interpreted as a measure of
the magnitude of strain (s), while tr(S3) represents the axisymmetric or planar nature
of strain.

The binary scalar invariants, G2, are formed by considering U r , S and Ω , two at
a time. When appropriately normalized by the fundamental invariants, the binary
invariants measure the relative orientation between the relative velocity vector,
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principal directions of strain rate and the direction of the vorticity vector. The
invariants, U r · SU r and U r · S2U r , under appropriate normalization can be expressed
in terms of the angles Θ and Φ as

U r · SU r

[U r · U r ][tr(S2)]1/2
=

cos2 Θ − fs sin2 Θ cos2 Φ − (1 − fs) sin2 Θ sin2 Φ[
1 + f 2

s + (1 − fs)2
] , (A 3)

U r · S2U r

[U r · U r ]tr(S2)
= cos2 Θ + f 2

s sin2 Θ cos2 Φ + (1 − fs)
2 sin2 Θ sin2 Φ. (A 4)

In a similar way, the invariant U r · Ω2U r , when appropriately normalized, measures
the angle between U r and ω. The next two invariants can be expressed as

tr(SΩ2) = ω · Sω, (A 5)

tr(S2Ω2) = ω · S2ω − |ω|2tr(S2). (A 6)

Hence they measure the relative orientation of the vorticity vector with the principal
directions of strain.

At first sight it might appear that the configuration formed by the relative velocity
vector, U r , the strain-rate and rotation-rate tensors is adequately defined by their
magnitudes and relative orientation (or angles between them). The binary invariant,
tr(S2Ω2SΩ), and the group, G3, might appear redundant and therefore seem to
be reducible in terms of the other invariants. However, the list provided in (A 2)
is irreducible. The physical interpretation of these additional independent scalar
invariants is complex. They are important only when both strain and rotation are
present. They are required to uniquely characterize the relative orientation of U r , S
and Ω . Hence we will not pursue these higher-order invariants and simply refer to
the equivalence theorem by Wang (1970).
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J. Méc. Théor. Applic. 2, 143–160.

Herron, I. H., Davis, S. H. & Bretherton, F. P. 1975 On the sedimentation of a sphere in a
centrifuge. J. Fluid Mech. 68, 209–234.



148 P. Bagchi and S. Balachandar

Howe, M. S. 1995 On the force and moment on a body in an incompressible fluid, with application
to rigid bodies and bubbles at low and high Reynolds numbers. Q. J. Mech. Appl. Maths 48,
401–426.

Kim, I., Elghobashi, S. & Sirignano, W. A. 1998 On the equation for spherical-particle motion:
effect of Reynolds and acceleration numbers. J. Fluid Mech. 367, 221–254.

Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.

Lovalenti, P. M. & Brady, J. F. 1993 The force on sphere in a uniform flow with small-amplitude
oscillations at finite Reynolds number. J. Fluid Mech. 256, 607–614.

Magnaudet, J. 1997 The forces acting on bubbles and rigid particles. ASME Fluids Engng Summer
Meeting. FEDSM 97-3522.

Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous
flows. Annu. Rev. Fluid Mech. 32, 659–708.

Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical
bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97–135.

Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small sphere in a non-uniform flow.
Phys. Fluids 26, 883–889.

McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech.
224, 261–274.

McLaughlin, J. B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid
Mech. 246, 249–265.

Mei, R. 1994 Flow due to an oscillating sphere and an expression for unsteady drag on the sphere
at finite Reynolds number. J. Fluid Mech. 270, 133–174.

Mei, R. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream and unsteady
drag at finite Reynolds number. J. Fluid Mech. 237, 323–341.

Mei, R., Lawrence, C. J. & Adrian, R. J. 1991 Unsteady drag on a sphere at finite Reynolds
number with small fluctuations in the free-stream velocity. J. Fluid Mech. 233, 613–631.

Miyazaki, K., Bedeaux, D. & Avalos, J. B. 1995 Drag on a sphere in slow shear flow. J. Fluid
Mech. 296, 373–390.

Mittal, R. & Balachandar, S. 1996 Direct numerical simulation of flow past elliptic cylinders.
J. Comput. Phys. 124, 351-367.

Mougin, G. & Magnaudet, J. 2001 The generalized Kirchhoff equations and their application to
the interaction between a rigid body and an arbitrary time-dependent viscous flow. Intl J.
Multiphase Flow (to appear).
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